Publications

Book Chapters

5 - 270 R. Contreras, L. R. Domingo and B. Silvi. 51 Electron Densities: Population Analysis and Beyond. ncyclopedia of Physical Organic Chemistry, Z. Wang Ed.,Wiley, Vol 4, pp 2705-2818 (2017).

4 - 239 Luis R. Domingo, Jose A. Sáez, Lydia Rhyman and Ponnadurai Ramasami. Diels-Alderase catalysing the [4+2] cycloaddition in the biosynthesis of Spinosyn A: Reality or Fantasy?.Book Chapter: Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology - Algorithms and Software Tools, Q.-N, Tran and H. R. Arabnia eds, Publisher: Elsevier/MK. Chapter 9, pp 169-201 (2015).

3 - 238   P. M. E. Mancini, C. M. Ormachea, C. D. Della Rosa, M. N. Kneeteman, L. R. Domingo. Protic and Nonprotic Ionic Liquids in Polar Diels-Alder Reactions Using Properly Substituted Heterocycles as Dienophiles. A DFT StudyIn “Ionic Liquids – New Aspect for the Future”Ed Jun-ichiKadokawa. INTECH. Chapter 16. pp 391-431 (2013). http://dx.doi.org/10.5772/51656

2 - 237   Domingo, L. R., Andrés, J., General and Theoretical Aspects of the Metal Enolates. In The Chemistry of Metal Enolates. Part 1. PataiSeries: The Chemistry of Functional Groups. John Wiley and Sons. pp 1-80 (2009).

1 - 236   Perez, P., Domingo, L. R., Aizman, A., Contreras, R. The Electrophilicity Index in Organic Chemistry. In Theoretical Aspects of Chemical Reactivity. Elsevier. New York. 19, pp 139-201 (2007).


Reviews

3 - 258  L R. Domingo, M. Ríos-Gutiérrez, P. Pérez.  Applications of the Conceptual Density Functional Theory Indices to  Organic Chemistry Reactivity. Molecules21, 748(2016).
Download Open Access Review

2 - 226 L.R. Domingo, A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 4, 32415-32428 (2014).
Download Open Access Review

1 - 105 L. R. Domingo,  Theoretical studies on domino cycloaddition reactions. Mini-Reviews in Organic Chemistry 2, 47-57 (2005).


Articles

Accepted

278 Pedro M. E. Mancini, María N. Kneeteman, Mauro Cainelli, Carla M. Ormachea, Luis R. Domingo. Nitropyrroles, Diels-Alder reactions assisted by microwave irradiation and solvent effect. An experimental and theoretical study. J. Mol. Struct (2017).
277 D. Hallooman, H. Bhakhoa, M. Ríos-Gutiérrez, L. Rhyman, A. A. Oliferenko, A. R. Katritzky, I. A. Alswaidan, M. I. Elzagheid, L. R. Domingo and P. Ramasami.Copper(I) Catalysed Regioselective Synthesis of Pyrazolo[5,1-c]-1,2,4-triazoles: A DFT Mechanistic Study. Tetrahedron (2017).
274 A. I. Adjieufack , I. M. Ndassa, J. Ketcha Mbadcam, M. Ríos-Gutiérrez, and L. R. Domingo. Steric interactions controlling the syn diastereofacial selectivity in the [3+2] cycloaddition reaction between acetonitrile axide and 7-oxanorborn-5-en-2-ones. A Molecular Electron Density Theory study. J. Phys. Org. Chem. (2017).
262 Chafia Sobhi, Abdelmalek Khorief Nacereddine, Abdelhafid Djerourou, Mar Ríos- Gutiérrez, Luis R. Domingo. A DFT study of the mechanism and selectivities of the [3 + 2] cycloaddition reaction between 3-(benzylideneamino)oxindole and trans-ß-nitrostyrene. J. Phys. Org. Chem. (2016).

2017


276 L. R. Domingo, M. Ríos-Gutiérrez, P. Pérez. A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Nitrones with Strained Allenes. RSC Adv. 7, 26879–26887 (2017)
275 L. R. Domingo, M. Ríos-Gutiérrez. A Molecular Electron Density Theory Study of the Reactivity of Azomethine Imine in [3+2] Cycloaddition Reactions. Molecules 201722, 750.
273  Luis R. Domingo, Mar Ríos-Gutiérrez, Saeedreza Emamian.  Understanding the domino reactions between 1-diazopropan-2-one and 1,1-dinitroethylene. A molecular electron density theory study of the [3+2] cycloaddition reactions of diazoalkanes with electron-deficient ethylenes. RSC Adv.7, 15586–15595 (2017)
272 L. R. Domingo, M. Ríos-Gutiérrez, P. Pérez. How does the Global Electron Density Transfer Diminish Activation Energies in Polar Cycloaddition Reactions? A Molecular Electron Density Theory Study. Tetrahedro73, 1718-1724  (2017). 
271 M. Ríos-Gutiérrez, A. Darù, T. Tejero, L. R. Domingo, and P. Merino.  Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Nitrones with Ketenes Org. Biomol. Chem. 15, 1618–1627 (2017)
269 A. I. Adjieufack, I. M. Ndassa, J. Ketcha Mbadcam, M. Ríos-Gutiérrez and L. R. Domingo. Understanding the reaction mechanism of the Lewis Acid (MgBr2) catalysed [3+2] cycloaddition reaction between C-methoxycarbonyl nitrone and 2-propen-1-ol: a DFT study. Theor. Chem. Acc. 136:5 (2017). 
267 Luis R. Domingo, Mar Ríos-Gutierrez, Eduardo Chamorro and Patricia Pérez. Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theor. Chem. Acc.  136:1 (2017).


2016

268 Luis R. Domingo, Mar Ríos-Gutierrez, Eduardo Chamorro, Patricia Pérez. Aromaticity in Pericyclic Transition Structures? A Critical Rationalisation based on the Topological Analysis of the Electron Localisation Function Framework. ChemSelec1, 6026 - 6039 (2016).
266 H. B. El Ayouchia, H. Anane, M. L. El Idrissi, L. R. Domingo, M. Julve, S.-E. Stiriba.  A theoretical study of the relationship between the electrophilicity w index and Hammett constant sp in [3+2] cycloaddition reactions of aryl azide/alkyne derivatives. Molecules 21, 1434 (2016).
265 Luis R. Domingo, Mar Ríos-Gutiérrez, and Patricia Pérez. An MEDT study of the carbenoid-type [3+2] cycloaddition reactions of nitrile ylides with electron-deficient chiral oxazolidinones. Org. Biomol. Chem. 14, 10427 - 10436 (2016).
264 Mar Ríos-Gutiérrez, Abdelmalek Khorief Nacereddine, Fouad Chafaa, Abdelhafid Djerourou, Luis R. Domingo. A DFT study of [3+2] cycloaddition reactions of an azomethine imine with N-vinyl pyrrole and N-vinyl tetrahydro-indole. J. Mol. Graph. Model. 70, 296-304
 (2016).
263 Luis R. Domingo. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 21, 1319 (2016).
261 M. J. Aurell, L. R. Domingo, M. Arnó and R. J. Zaragozá. A DFT study of the mechanism of NHC catalysed annulation reactions involving a,b-unsaturated acyl azoliums and b-naphthol. Org. Biomol. Chem. 14, 8338-8345 (2016).
260 E. Chamorro, M. Duque-Noreña, Mar Ríos-Gutiérrez, L R. Domingo, P. Pérez, Intrinsic Relative Nucleophilicity of Indoles Theor. Chem. Acc. 135, 202 (2016).
259 L. R. Domingo, M. Ríos-Gutiérrez, M. Duque-Noreña, E. Chamorro, P. Pérez. Understanding the carbenoid-type reactivity of nitrile ylides in [3+2] cycloaddition reactions towards electron-deficient ethylenes. A molecular electron density theory study. Theor. Chem. Acc. 135, 160 (2016).
257 D. Hallooman, M. Ríos-Gutiérrez, L. Rhyman, I. A. Alswaidan, H.-K. Fun, L. R. Domingo, P.Ramasami. [3+2] Cycloaddition reaction of 1H-phosphorinium-3-olate and 1-
4 methylphosphorinium-3-olate with methyl acrylate: A DFT study. Comput Theor. Chem.   1087, 36-47 (2016).
256 Luis R. Domingo, Mar Ríos-Gutiérrez, Patricia Pérez. A new model for C-C bond formation processes derived from the Molecular Electron-Density Theory in the study of the mechanism of [3+2] cycloaddition reactions of carbenoid nitrile ylides with electron-deficient ethylenes. Tetrahedron 72, 1524-1532 (2016)
255 Meriem Awatif Mahi, Sidi Mohamed Mekelleche, Wafaa Benchouk, M. José Aurell, and Luis Ramón Domingo. Theoretical Study of the Regio- and Stereoselctivity of the Intramolecular Povarov Reaction yielding 5H-chromeno[2,3-c] acridine derivatives. RSC Adv. 6. 15759-15769 (2016).
254 Luis R. Domingo, Mar Ríos-Gutiérrez, Saeedreza Emamian. Understanding the stereoselectivity in Brønsted acid catalysed Povarov reactions generating cis/trans CF3-substituted tetrahydroquinolines: a DFT study. RSC Adv. 6, 17064–17073 (2016)
253 Luis R. Domingo, Saeedreza Emamian, Majid Salami, Mar Ríos-Gutiérrez. Understanding the molecular mechanism of [3+2] cycloaddition reaction of benzonitrile oxide toward an N-vinylpyrrole derivative with the aid of ELF topological analysis. J. Phys. Org. Chem. 29, 368-376 (2016).
252 Luis R. Domingo, Mar Ríos-Gutiérrez, Patricia Pérez,  Eduardo Chamorro. Understanding the [2n+2n] reaction mechanism between a carbenoid intermediate and  CO2. Mol. Phys. 114, 1374-1391 (2016).
251 D. Jornet, F. Bosca, J. M. Andreu, L. R. Domingo, R. Tormos, M. A. Miranda.  Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. Journal of Photochemistry and Photobiology B: Biology, 155,1-6 (2016).


2015

250 A. K. Nacereddine,   C. Sobhi,   A. Djerourou,   M. Ríos-Gutiérrez, L. R. Domingo. Non-classical CH...O hydrogen-bond determining the regio- and stereoselectivity in the [3+2] cycloaddition reaction of (Z) C-phenyl-N-methylnitrone with dimethyl 2-benzylidenecyclopropane-1,1-dicarboxylate. A topological electron-density study. RSC Adv., 5, 99299-99311 (2015).
249 Mar Ríos-Gutiérrez, Hatem Layeb, Luis R Domingo. A DFT Comparative Study of the Mechanisms of Lewis Acid and Brønsted Acid Catalysed Povarov Reactions. Tetrahedron, 71, 9339-9345 (2015).
248 M. Ríos-Gutiérrez, L. R. Domingo,  P. Pérez. Understanding the high reactivity of carbonyl compounds towards nucleophilic carbenoid intermediates generated from carbene isocyanides RSC Adv., 5, 84797-84809 (2015).
247 Carla M. Ormachea, Pedro M. E. Mancini, María N. Kneeteman, Luis R. Domingo. Understanding the Participation of 3-Nitropiridine in Polar Diels-Alder Reactions. A DFT Study. Comp. Theor. Chem. 2015, 1072, 37-42 (2015).
246 A. K. Nacereddine, Hatem Layeb, Fouad Chafaa, Wassila Yahia,, A. Djerourou, L. R Domingo. A DFT study of the role of the Lewis acid catalysts in the [3+2] cycloaddition reaction of the electrophilic nitrone isomer of methyl glyoxylate oxime with nucleophilic cyclopentene.RSC Adv., 5, 64098-64105 (2015).
245 M. Ríos-Gutiérrez, P. Pérez, L. R. Domingo. A Bonding Evolution Theory Study of the Mechanism of [3+2] Cycloaddition Reactions of Nitrones with Electron-Deficient Ethylenes. RSC Adv., 5, 58464-58477 (2015).
244 Jamal Lasri, Saied M. Soliman, M. Adília Januário Charmier, Mar Ríos-Gutiérrez and Luis R. Domingo. Synthesis, Molecular Structure and Stability of Fused Bicyclic D4-1,2,4-Oxadiazoline Pt(II) Complexes. Polyhedron 98, 55-63 (2015).
243 F. Lassagne, F. Chevallier, T. Roisnel, V. Dorcet, F. Mongin, L. R. Domingo. A Combined Experimental and Theoretical Study of the Ammonium Bifluoride Catalyzed Regioselective Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines. Synthesis, 2015, 47, 2680-2689.
242 L. R. Domingo, M. Rios-Gutierrez,  P. Pérez, Unravelling the Mechanism of the Ketene-Imine Staudinger Reaction. An ELF Quantum Topological Analysis. RSC Adv. 5, 37119-37129 (2015).
235 P. Pérez, L. R. Domingo. A DFT Study of the Inter- and Intramolecular Aryne Ene Reaction. Eur. J. Org. Chem. 2826-2834 (2015).
241 H. Layeb, A. K. Nacereddine, A. Djerourou, M. Rios-Gutierrez, L. R. Domingo. Understanding the Role of the Trifluoromethyl Group in the Reactivity of Enol Acetates in [3+2] Cycloaddition Reactions of Nitrones. A DFT Study J. Mol. Moldel. 21:104, 1-9 (2015).
240 P. Perez, D. Yepes, P. Jaque, E. Chamorro, L. R. Domingo, R. S. Rojas, A. Toro-Labbe. A Computational and Conceptual DFT Study on the Mechanism of Hydrogen Activation by Novel Frustrated Lewis Pairs. Phys. Chem. Chem. Phys. 17, 10715-10725 (2015).
234 L. R. Domingo, M. Ríos-Gutiérrez, P. Pérez. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron, 75, 2421-2427 (2015).
233 L. R. Domingo,  M. J. Aurell,  P. Pérez. A Mechanistic Study of the Participation of Azomethine Ylides and Carbonyl Ylides in [3+2] Cycloaddition Reactions. Tetrahedron.  75 1050-1057(2015).
232 L. R. Domingo, J. A. Sáez, S. R. Emamian. Understanding the Domino Reaction between 3-Chloroindoles and Methyl Coumalate yielding Carbazoles. A DFT Study. Org. Biomol. Chem. 13, 2034-2043 (2015).
231 A. Monleón, G. Blay, L. R. Domingo, M. C. Muñoz and J. R. Pedro. Efficient synthesis of 5-chalcogen-1,3-oxazin-2-ones via chalcogen-mediated yne-carbamate cyclization. An experimental and theoretical study. Eur. J. Org. Chem. 1020-1027 (2015). 
229 C. D. Della Rosa, P. M.E. Mancini, M. N. Kneeteman, A. F. Lopez Baena, M. A. Suligoy, L.R. Domingo, Polar Diels-Alder Reactions Using Electrophilic Nitrobenzothiophenes. A Combined Experimental and DFT Study. J. Mol. Struct. 1079, 47-53 (2015).


2014

230  L.R. Domingo, J.A. Sáez,  Understanding the selectivity in the formation of δ-lactams vs β-lactams in the Staudinger reactions of chloro-cyan-ketene with unsaturated imines. An DFT study. RSC Adv,  4, 58559-58566 (2014).
228 L.R. Domingo, M.J. Aurell, P. Pérez. Understanding the Polar Mechanism of the Ene Reaction. A DFT Study.  12, 7581-7590 (2014)
227 L.R. Domingo,Why Diels-Alder reactions are non-concerted processes. J. Chil. Chem. Soc.59, 2615-2518 (2014)
225 H. Layeb, A. K. Nacereddine, A. Djerourou, L. R. Domingo. Understanding the domino retro [3+2] cycloaddition/cyclisation reaction of bicyclic isoxazolidines in the synthesis of spirocyclic alkaloids. A DFT study. J. Mol. Model. 20:2347, 1-11 (2014).
224 L. R. Domingo, P. Pérez. A Quantum Chemical Topological Analysis of the C-C Bond Formation in Organic Reactions Involving Cationic Species. Phys. Chem. Chem. Phys. 16, 14108-14115 (2014).
223 L. R. Domingo, M. J. Aurell,  J. A. Sáez, S. M. Mekelleche.  Understanding the mechanism of the Povarov reaction. A DFT studyRSC Adv. 4, 16567-16577 (2014).
222 L. R. Domingo, M. J. Aurell,  P. Pérez. A DFT analysis of the participation of TACs in zw-type [3+2] Cycloaddition Reactions. Tetrahedron 20, 4519-4525 (2014).
221 L. R. Domingo, S. R. Emamian. High reactivity of triazolinediones in polar reactions: a DFT study. Ind. J. Chem. 53, 940-948 (2014).
220 L. R. Domingo, M. J. Aurell, P. Pérez. The mechanism of ionic Diels-Alder reactions. A DFT study of the oxa-Povarov reaction. RSC Adv. 4, 16567-16577 (2014).
219 M. A. Fernández-Herrera, C. Zavala-Oseguera, J. L. Cabellos, J. Sandoval-Ramírez, L. R. Domingo, G. Merino. Understanding the high reactivity of triazolinediones in Diels-Alder reactions. A DFT study.  J. Mol. Model. 20:2207, 1-7 (2014).
218. Yepes, D.; Murray, J. S.; Pérez, P.; Domingo, L. R.; Politzer, P.; Jaque, P. Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels-Alder reactions. Phys. Chem. Chem. Phys. 16, 6726-6734 (2014).
217 Emamian, S.R.; Domingo, L. R.; Tayyari, S. F. Tautomerism in pyridazin-3(2H)-one: A theoretical study using implicit/explicit solvation model. J. Mol. Graph. Model. 49, 47-54 (2014).
215 Esseffar, M.; Jalal, R.; Aurell, M. J.; Domingo, L. R.. A DFT study of the domino reactions between N-heterocyclic carbenes, ketenimines and acetylene carboxylates yielding spiro-pyrroles. Comp. Theor. Chem. 1030, 25-32 (2014).
216 Domingo, L .R.; Emamian, S. R. Understanding the Mechanisms of [3+2] Cycloaddition Reactions. The Pseudoradical versus the Zwitterionic Mechanism.  Tetrahedron 70, 1267-1273 (2014).
214 Domingo, L. R.;  Sáez, J. A.; Arnó,M. A DFT study on the NHC catalyzed Michael addition of enols to a,b-unsaturated acyl-azoliums. A base catalysed C-C bond-formation step. Org. Biomol. Chem. 12, 895-904  (2014).

2013


213 L.R. Domingo State of the Art of the Bonding Changes along the Diels-Alder Reaction between Butadiene and Ethylene. Refuting the Pericyclic Mechanism. Organic Chemistry: Current Research 2: 120. doi:10.4172/2161-0401.1000120 (2013).
Download Open Access Review
212 J. Soto-Delgado, J. A. Sáez, R. A. Tapia, L. R. Domingo. Theoretical Study on the Molecular Mechanism of the [5+2] vs [4+2] Cyclization Mediated by Lewis Acid in the Quinone System. Org. Biomol. Chem. 11, 8357-8365 (2013).
211 L. Rhyman, P. Ramasami, J. A. Joule, L. R. Domingo. A density functional theory study of the regio- and stereoselectivity of the 1,3-dipolar cycloaddition of C-methyl substituted pyrazinium-3-olates with methyl acrylate and methyl methacrylate. Comp. Theor. Chem. 1025, 58-66  (2013).
210 G. Blay, L. R. Domingo, A. Monleón,  M. C. Muñoz, J. R. Pedro. Synthesis of densely functionalized 5-halogen-1,3-oxazin-2-ones by halogen-mediated regioselective cyclization of N-Cbz-protected propargylic amines: A combined experimental and theoretical study. Chem. Eur. J. 19, 14852-14860 (2013).
209 E. Chamorro, P. Pérez and L. R. Domingo. On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem. Phys. Lett. 582. 141-143 (2013).
208  P. M. E. Mancini, C. D. Della Rosa, C. M. Ormachea, M. N. Kneeteman, and L. R. Domingo. Experimental and Theoretical Studies on Polar Diels-Alder Reactions of 1-Nitronaphathalene developed in Ionic Liquids. RSC Advances 3, 13825-13834 (2013).
207  Jornet, D.; Castillo, M. A.; Sabate, M. C.; Domingo, L. R.; Tormos, R.; Miranda, M.; Xanthone photosensitized detoxification of the veterinary anthelmintic fenbendasole. J. Photochem. Photobiol. A-Chem.  264, 34-40 (2013).
206  Domingo, L. R.;  Pérez, P. Global and Local Reactivity Indices for Electrophilic/Nucleophilic Free Radicals. Org. Biomol. Chem. 11, 4350-4358 (2013).
205   Domingo,L.R.; Pérez, P.; Saez, J.A. Understanding the C-C bond formation in polar reactions. An ELF analysis of the Friedel-Crafts reaction between indoles and nitroolefins. RSC Advances 3,7520-7528 (2013).
204   Domingo,L.R.; Pérez, P. and Ortega, D. Why do five-membered heterocyclic compounds sometimes not participate in polar Diels-Alder reactions?. Journal Organic Chemistry 78, 2462-2471 (2013).
203   Domingo, L. R.; Sáez, J. A.; Joule, J. A.; Rhyman,L.; Ramasami, P. A DFT St udy of the [3+2] versus [4+2] Cycloaddition Reactions of 1,5,6-Trimethyl-pyrazinium-3-olate with Methyl Methacrylate. Journal Organic Chemistry 78. 1621-1629 (2013).
202   Domingo, Luis R., Perez, P.; Saez, J. A. Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Advances 3, 1486–1494, doi:10.1039/c2ra22886f (2013).
201   Domingo, Luis R., Perez, P.; Saez, J. A. Understanding the regioselectivity in hetero Diels-Alder reactions. An ELF analysis of the reaction between nitrosoethylene and 1-vinylpyrrolidine.Tetrahedron 69, 107-114 (2013).
200   Rhyman, L., Ramasami, P., Joule, J. A., Saez, J. A. and ; Domingo, L. R. Understanding the formation of 3+2 and 2+4 cycloadducts in the Lewis acid catalysed reaction between methyl glyoxylate oxime and cyclopentadiene: a theoretical study. Rsc Advances 3, 447-457, doi:10.1039/c2ra22332e (2013).


2012

199   Soto-Delgado, J., Aizman, A., Contreras, R. and ; Domingo, L. R. On the Catalytic Effect of Water in the Intramolecular Diels-Alder Reaction of Quinone Systems: A Theoretical Study. Molecules 17, 13687-13703, doi:10.3390/molecules171113687 (2012).
198   Sobhi, C., Nacereddine, A. K., Djerourou, A., Aurell, M. J. and ; Domingo, L. R. The role of the trifluoromethyl group in reactivity and selectivity in polar cycloaddition reactions. A DFT study. Tetrahedron 68, 8457-8462, doi:10.1016/j.tet.2012.07.085 (2012).
197   Rosa, C. D. D. et al. Polar Diels-Alder Reactions Developed in a Protic Ionic Liquid: 3-Nitroindole as Dienophile. Theoretical Studies Using DFT Methods. Letters in Organic Chemistry 9, 691-695 (2012).
196   Rhyman, L., Jhaumeer-Laulloo, S., Domingo, L. R., Joule, J. A. and ; Ramasami, P. COMPUTATIONAL ASSESSMENT OF 1,3-DIPOLAR CYCLOADDITION OF NITRILE OXIDES WITH ETHENE AND 60 FULLERENE. Heterocycles 84, 719-735, doi:10.3987/com-11-s(p)46 (2012).
195   Rhyman, L. et al. Regio-and Stereoselectivity of the 1,3-Dipolar Cycloaddition of Pyridinium-3-olates and Pyrazinium-3-olates with MethylMethacrylate: A Density Functional Theory Exploration. Current Organic Chemistry 16, 1711-1722 (2012).
194   Perez-Ruiz, R., Saez, J. A., Domingo, L. R., Jimenez, M. C. and ; Miranda, M. A. Ring splitting of azetidin-2-ones via radical anions. Organic and ; Biomolecular Chemistry 10, 7928-7932, doi:10.1039/c2ob26528a (2012).
193   Perez-Ruiz, R., Saez, J. A., Domingo, L. R., Jimenez, M. C. and ; Miranda, M. A. Oxetane Ring Enlargement through Nucleophilic Trapping of Radical Cations by Acetonitrile. Organic Letters 14, 5700-5703, doi:10.1021/ol302717s (2012).
192   Mancini, P. M. E. et al. Ionic liquids and microwave irradiation as synergistic combination for polar Diels-Alder reactions using properly substituted heterocycles as dienophiles. A DFT study related. Tetrahedron Letters 53, 6508-6511, doi:10.1016/j.tetlet.2012.09.071 (2012).
191   Gonzalez-Navarrete, P., Domingo, L. R., Andres, J., Berski, S. and ; Silvi, B. Electronic fluxes during diels-alder reactions involving 1,2-benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory. Journal of Computational Chemistry 33, 2400-2411, doi:10.1002/jcc.23085 (2012).
190   Domingo, L. R., Zaragoza, R. J., Saez, J. A. and ; Arno, M. Understanding the Mechanism of the Intramolecular Stetter Reaction. A DFT Study. Molecules 17, 1335-1353, doi:10.3390/molecules17021335 (2012).
189   Domingo, L. R., Saez, J. A. and ; Arno, M. An ELF analysis of the C-C bond formation step in the N-heterocyclic carbene-catalyzedhydroacylation of unactivated C-C double bonds. Rsc Advances 2, 7127-7134, doi:10.1039 c2ra21042h (2012).
188   Domingo, L. R., Perez, P. and ; Saez, J. A. Origin of the synchronicity in bond formation in polar Diels-Alder reactions: an ELF analysis of the reaction between cyclopentadiene and tetracyanoethylene. Organic and ; Biomolecular Chemistry 10, 3841-3851, doi:10.1039/c2ob25152c (2012).
187   Domingo, L. R., Perez, P., Aurell, M. J. and ; Saez, J. A. Understanding the Bond Formation in Hetero-Diels-Alder Reactions. An ELF Analysis of the Reaction of Nitroethylene with Dimethylvinylamine. Current Organic Chemistry 16, 2343-2351 (2012).
186   Domingo, L. R., Aurell, M. J., Perez, P. and ; Saez, J. A. Understanding the origin of the asynchronicity in bond-formation in polar cycloaddition reactions. A DFT study of the 1,3-dipolar cycloaddition reaction of carbonyl ylides with 1,2-benzoquinones. Rsc Advances 2, 1334-1342, doi:10.1039/c1ra00717c (2012).
185   Domingo, L. R., Aurell, M. J., Jalal, R. and ; Esseffar, M. A DFT study of the role of Lewis acid catalysts in the mechanism of the 1,3-dipolar cycloaddition of nitrile imines towards electron-deficient acryloyl derivatives. Computational and Theoretical Chemistry 986, 6-13, doi:10.1016/j.comptc.2012.01.035 (2012).
184   Chattaraj, P. K., Duley, S. and ; Domingo, L. R. Understanding local electrophilicity/nucleophilicity activation through a single reactivity difference index. Organic and ; Biomolecular Chemistry 10, 2855-2861, doi:10.1039 c2ob06943a (2012).
183   Brasil, E. M. et al. Azo-hydrazo conversion via 1,5 -hydrogen shifts. A combined experimental and theoretical study. Tetrahedron 68, 6902-6907, doi:10.1016/j.tet.2012.06.013 (2012).
182   Bentabed-Ababsa, G. et al. Experimental and theoretical study of the 3+2 cycloaddition of carbonyl ylides with alkynes. Organic and ;Biomolecular Chemistry 10, 8434-8444, doi:10.1039/c2ob26442k (2012).
181   Bartovsky, P., Domingo, L. R., Jornet, D., Tormos, R. and ; Miranda, M. A. The triplet excited state of the bioactive compound thiabendazole.Characterization and suitability as reporter for cyclodextrin complexation. Chemical Physics Letters 525-26, 166-170, doi:10.1016/j.cplett.2012.01.001 (2012).
180   Andres, J., Berski, S., Domingo, L. R. and ; Gonzalez-Navarrete, P. Nature of the ring-closure process along the rearrangement of octa-1,3,5,7-tetraene to cycloocta-1,3,5-triene from the perspective of the electron localization function and catastrophe theory. Journal of Computational Chemistry 33, 748-756, doi:10.1002/jcc.22898 (2012).
179   Alcaide, B. et al. Scandium-Catalyzed Preparation of Cytotoxic 3-Functionalized Quinolin-2-ones: Regioselective Ring Enlargement ofIsatins or Imino Isatins. Chempluschem 77, 563-569, doi:10.1002 cplu.201200090 (2012).


2011

178   Zeghada, S. et al. A combined experimental and theoretical study of the thermal cycloaddition of aryl azides with activated alkenes. Organic and ; Biomolecular Chemistry 9, 4295-4305, doi:10.1039/c1ob05176h (2011).
177   Soto-Delgado, J., Aizman, A., Contreras, R. and ; Domingo, L. R. A DFT Study of the Regioselectivity in Intramolecular Diels-Alder Reactions with Formation of a Tricyclodecane Skeleton. Letters in Organic Chemistry 8, 125-131, doi:10.2174/157017811794697494 (2011).
176   Rhyman, L. et al. 1,3-Dipolar cycloaddition of 1H-pyrazinium-3-olate and N1-and C-methyl substituted pyrazinium-3-olates with methylacrylate: a density functional theory study. Tetrahedron 67, 8383-8391, doi:10.1016 j.tet.2011.08.021 (2011).
175   Perez-Ruiz, R., Domingo, L. R., Jimenez, M. C. and ; Miranda, M. A. Experimental and Theoretical Studies on the Radical-Cation-MediatedImino-Diels-Alder Reaction. Organic Letters 13, 5116-5119, doi:10.1021 ol201984s (2011).
174   Domingo, L. R., Zaragoza, R. J. and ; Arno, M. Understanding the cooperative NHC/LA catalysis for stereoselective annulation reactions withhomoenolates. A DFT study. Organic and ; Biomolecular Chemistry 9, 6616-6622, doi:10.1039/c1ob05609c (2011).
173   Domingo, L. R. and ; Saez, J. A. Understanding the Electronic Reorganization along the Nonpolar 3+2 Cycloaddition Reactions of CarbonylYlides. Journal of Organic Chemistry 76, 373-379, doi:10.1021/jo101367v (2011).
172   Domingo, L. R., Perez-Ruiz, R., Arguello, J. E. and ; Miranda, M. A. DFT Study on the Cycloreversion of Thietane Radical Cations. Journal of Physical Chemistry A 115, 5443-5448, doi:10.1021/jp200177a (2011).
171   Domingo, L. R. and ; Perez, P. The nucleophilicity N index in organic chemistry. Organic and ; Biomolecular Chemistry 9, 7168-7175, doi:10.1039/c1ob05856h (2011).
170   Domingo, L. R. Hot Topic: Applications of Reactivity Indices based on Density Functional Theory to the Study of Organic Reactions. The Case of the Diels-Alder Reaction. Letters in Organic Chemistry 8, 81-81 (2011).
169   Benchouk, W., Mekelleche, S. M., Silvi, B., Aurell, M. J. and ; Domingo, L. R. Understanding the kinetic solvent effects on the 1,3-dipolar cycloaddition of benzonitrile N-oxide: a DFT study. Journal of Physical Organic Chemistry 24, 611-618, doi:10.1002/poc.1858 (2011).
168   Andres, J., Berski, S., Domingo, L. R., Polo, V. and ; Silvi, B. Describing the Molecular Mechanism of Organic Reactions by Using Topological Analysis of Electronic Localization Function. Current Organic Chemistry 15, 3566-3575 (2011).
167   Alcaide, B. et al. Controlled Rearrangement of Lactam-Tethered Allenols with Brominating Reagents: A Combined Experimental and Theoretical Study on alpha-versus beta-Keto Lactam Formation. Chemistry-a European Journal 17, 11559-11566, doi:10.1002/chem.201101160 (2011).

2010

166   Viudes, V., Bartovsky, P., Domingo, L. R., Tormos, R. and ; Miranda, M. A. Experimental and Theoretical (DFT) Characterization of the Excited States and N-Centered Radical Species Derived from 2-Aminobenzimidazole, the Core Substructure of a Family of Bioactive Compounds. Journal of Physical Chemistry B 114, 6608-6613, doi:10.1021/jp910970p (2010).
165   Soto-Delgado, J., Domingo, L. R. and ; Contreras, R. Quantitative characterization of group electrophilicity and nucleophilicity forintramolecular Diels-Alder reactions. Organic and ; Biomolecular Chemistry 8, 3678-3683, doi:10.1039/c004628k (2010).
164   Soto-Delgado, J., Aizman, A., Domingo, L. R. and ; Contreras, R. Invariance of electrophilicity of independent fragments. Application tointramolecular Diels-Alder reactions. Chemical Physics Letters 499, 272-277, doi:10.1016 j.cplett.2010.09.068 (2010).
163   Rhyman, L. et al. The 1,3-dipolar cycloaddition of 1H-pyridinium-3-olate and 1-methylpyridinium-3-olate with methyl acrylate a density functional theory study. Tetrahedron 66, 9187-9193, doi:10.1016/j.tet.2010.09.071 (2010).
162   Jornet, D., Bartovsky, P., Domingo, L. R., Tormos, R. and ; Miranda, M. A. Experimental and Theoretical Studies on the Mechanism of Photochemical Hydrogen Transfer from 2-Aminobenzimidazole to n pi* and pi pi*Aromatic Ketones. Journal of Physical Chemistry B 114, 11920-11926, doi:10.1021 jp1053327 (2010).
161   Font-Sanchis, E. et al. Alkoxy-styryl DCDHF fluorophores. Physical Chemistry Chemical Physics 12, 7768-7771, doi:10.1039/c003752b (2010).
160   Domingo, L. R., Zaragoza, R. J. and ; Arno, M. Understanding the mechanism of stereoselective synthesis of cyclopentenes via N-heterocyclic carbene catalyzed reactions of enals with enones. Organic and ; Biomolecular Chemistry 8, 4884-4891, doi:10.1039/c0ob00088d (2010).
159   Domingo, L. R., Chamorro, E. and ; Perez, P. Understanding the mechanism of non-polar Diels-Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Organic and ; Biomolecular Chemistry 8, 5495-5504, doi:10.1039/c0ob00563k (2010).
158   Domingo, L. R., Chamorro, E. and ; Perez, P. Understanding the High Reactivity of the Azomethine Ylides in 3+2 Cycloaddition Reactions.Letters in Organic Chemistry 7, 432-439 (2010).
157   Domingo, L. R., Aurell, M. J., Jalal, R. and ; Esseffar, M. A DFT study of the role of the Mg complex formation on the mechanism of the 1,3-dipolar cycloadditions of benzonitrile oxides with acryloylpyrazolidinone. Journal of Molecular Structure-Theochem 942, 26-31, doi:10.1016j.theochem.2009.11.028 (2010).
156   Alcaide, B. et al. Ring Expansion versus Cyclization in 4-Oxoazetidine-2-carbaldehydes Catalyzed by Molecular Iodine: Experimental and Theoretical Study in Concert. Advanced Synthesis and ; Catalysis 352, 1688-1700, doi:10.1002/adsc.201000171 (2010).


2009

155   Soto-Delgado, J., Domingo, L. R. and ; Contreras, R. Understanding the influence of Lewis acids in the regioselectivity of the Diels-Alder reactions of 2-methoxy-5-methyl-1,4-benzoquinone: A DFT study. Journal of Molecular Structure-Theochem 902, 103-108, doi:10.1016/j.theochem.2009.02.025 (2009).
154   Soto-Delgado, J., Domingo, L. R., Araya-Maturana, R. and ; Contreras, R. Understanding the stereo-and regioselectivities of the polar Diels-Alder reactions between 2-acetyl-1,4-benzoquinone and methyl substituted 1,3-butadienes: a DFT study. Journal of Physical Organic Chemistry 22, 578-584, doi:10.1002/poc.1473 (2009).
153   Perez, P., Domingo, L. R., Duque-Norena, M. and ; Chamorro, E. A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. Journal of Molecular Structure-Theochem 895, 86-91, doi:10.1016/j.theochem.2008.10.014 (2009).
152   Esseffar, M. et al. Formation of pyrazol-1,3,4-thiadiazoles through 1,3-dipolar cycloadditions of 3-thioxo-1,2,4 -triazepin-5-one withnitrilimines: an experimental and computational study. Journal of Physical Organic Chemistry 22, 31-41, doi:10.1002/poc.1421 (2009).
151   Domingo, L. R. and ; Saez, J. A. Understanding the mechanism of polar Diels-Alder reactions. Organic and ; Biomolecular Chemistry 7, 3576-3583, doi:10.1039/b909611f (2009).
150   Domingo, L. R., Picher, M. T. and ; Saez, J. A. Toward an Understanding of the Unexpected Regioselective Hetero-Diels-Alder Reactions of Asymmetric Tetrazines with Electron-Rich Ethylenes: A DFT Study. Journal of Organic Chemistry 74, 2726-2735, doi:10.1021/jo802822u (2009).
149   Domingo, L. R., Perez-Ruiz, R., Arguello, J. E. and ; Miranda, M. A. DFT Study on the Molecular Mechanism of the 4+2 Cycloaddition between Thiobenzophenone and Arylalkenes via Radical Cations. Journal of Physical Chemistry A 113, 5718-5722, doi:10.1021/jp900486e (2009).
148   Domingo, L. R., Chamorro, E. and ; Perez, P. An Analysis of the Regioselectivity of 1,3-Dipolar Cycloaddition Reactions of Benzonitrile N-Oxides Based on Global and Local Electrophilicity and Nucleophilicity Indices. European Journal of Organic Chemistry, 3036-3044, doi:10.1002/ejoc.200900213 (2009).
147   Domingo, L. R., Aurell, M. J. and ; Arno, M. Understanding the mechanism of the N-heterocyclic carbene-catalyzed ring-expansion of 4-formyl-beta-lactams to succinimide derivatives. Tetrahedron 65, 3432-3440, doi:10.1016 j.tet.2009.02.030 (2009).
146   Domingo, L. R., Arno, M. and ; Saez, J. A. DFT Study of the Molecular Mechanism of Lewis Acid Induced 4+3 Cycloadditions of 2-Alkylacroleins with Cyclopentadiene. Journal of Organic Chemistry 74, 5934-5940, doi:10.1021/jo900889q (2009).
145   Bentabed-Ababsa, G. et al. A Combined Experimental and Theoretical Study of the Polar 3+2 Cycloaddition of Electrophilically Activated Carbonyl Ylides with Aldehydes and Imines. Journal of Organic Chemistry 74, 2120-2133, doi:10.1021/jo8027104 (2009).
144   Benchouk, W., Mekelleche, S. M., Aurell, M. J. and ; Domingo, L. R. Understanding the regio-and chemoselective polar 3+2 cycloaddition of the Padwa carbonyl ylides with alpha-methylene ketones. A DFT study. Tetrahedron 65, 4644-4651, doi:10.1016/j.tet.2009.04.033 (2009).

2008

143   Polo, V., Andres, J., Berskit, S., Domingo, L. R. and ; Silvi, B. Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology. Journal of Physical Chemistry A 112, 7128-7136, doi:10.1021/jp801429m (2008).
142   Jaramillo, P., Domingo, L. R., Chamorro, E. and ; Perez, P. A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. Journal of Molecular Structure-Theochem 865, 68-72, doi:10.1016 j.theochem.2008.06.022 (2008).
141   Esseffar, M., El Messaoudi, M., Jalala, R., Domingo, L. R. and ; Aurell, M. J. A combined experimental and theoretical study of the alkylation of 3,5-dithioxo-1,2,4 triazepines. Journal of Physical Organic Chemistry 21, 457-463, doi:10.1002/poc.1348 (2008).
140   Domingo, L. R., Saez, J. A., Zaragoza, R. J. and ; Arno, M. Understanding the Participation of Quadricyclane as Nucleophile in Polar 2 sigma+2 sigma+2 pi Cycloadditions toward Electrophilic pi Molecules. Journal of Organic Chemistry 73, 8791-8799, doi:10.1021/jo801575g (2008).
139   Domingo, L. R., Gil, S., Parra, M. and ; Segura, J. Unusual regioselectivity in the opening of epoxides by carboxylic acid enediolates. Molecules 13, 1303-1311, doi:10.3390/molecules13061303 (2008).
138   Domingo, L. R., Chamorro, E. and ; Perez, P. An understanding of the electrophilic/nucleophilic behavior of electro-deficient 2,3-disubstituted 1,3-butadienes in polar Diels-Alder reactions. A density functional theory study. Journal of Physical Chemistry A 112, 4046-4053, doi:10.1021 jp711704m (2008).
137   Domingo, L. R., Chamorro, E. and ; Perez, P. Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. Journal of Organic Chemistry 73, 4615-4624, doi:10.1021/jo800572a (2008).
136   Domingo, L. R., Aurell, M. J., Kneeteman, M. N. and ; Mancini, P. M. Mechanistic details of the domino reaction of nitronaphthalenes with the electron-rich dienes. A DFT study. Journal of Molecular Structure-Theochem 853, 68-76, doi:10.1016/j.theochem.2007.12.004 (2008).
135   Blay, G., Domingo, L. R., Hernandez-Olmos, V. and ; Pedro, J. R. New highly asymmetric henry reaction catalyzed by Cu(II) and a C(1)-Symmetric aminopyridine ligand, and its application to the synthesis of miconazole. Chemistry-a European Journal 14, 4725-4730, doi:10.1002/chem.200800069 (2008).
134   Bentabed-Ababsa, G. et al. Polar 3+2 cycloaddition of ketones with electrophilically activated carbonyl ylides. Synthesis of spirocyclicdioxolane indolinones. Organic and ; Biomolecular Chemistry 6, 3144-3157, doi:10.1039 b804856h (2008).


2007

133   Domingo, L. R., Saez, J. A. and ; Perez, P. A comparative analysis of the electrophilicity of organic molecules between the computed IPsand EAs and the HOMO and LUMO energies. Chemical Physics Letters 438, 341-345, doi:10.1016/j.cplett.2007.03.023 (2007).
132   Domingo, L. R., Benchouk, W. and ; Mekelleche, S. M. Understanding the role of the Lewis acid catalyst on the 1,3-dipolar cycloaddition of N-benzylideneaniline N-oxide with acrolein: a DFT study. Tetrahedron 63, 4464-4471, doi:10.1016/j.tet.2007.03.064 (2007).
131   Domingo, L. R., Aurell, M. J., Arno, M. and ; Saez, J. A. Toward an understanding of the acceleration of diels-alder reactions by a pseudo-intramolecular process achieved by molecular recognition. A DFT study. Journal of Organic Chemistry 72, 4220-4227, doi:10.1021/jo070373j (2007).
130   Domingo, L. R., Aurell, M. J., Arno, M. and ; Saez, J. A. Toward an understanding of the 1,3-dipolar cycloaddition between diphenylnitroneand a maleimide : bisamide complex. A DFT analysis of the reactivity of symmetrically substituted dipolarophiles. Journal of Molecular Structure-Theochem 811, 125-133, doi:10.1016/j.theochem.2006.12.051 (2007).
129   Clares, M. P. et al. A bibracchial lariat aza-crown ether as an abiotic catalyst of malonic acid enolization. New Journal of Chemistry 31, 2065-2070, doi:10.1039/b618787k (2007).
128   Azzouzi, S. et al. Experimental and theoretical push-pull chemo-and regioselectivity in 1,3-dipolar cycloaddition reactions: The case of benzotriazepin-5-one with mesitylnitrile oxide. Journal of Physical Organic Chemistry 20, 245-254, doi:10.1002/poc.1145 (2007).
127   Arno, M., Zaragoza, R. J. and ; Domingo, L. R. A DFT study of the asymmetric (S)-5-(pyrrolidin-2-yl)-1H-tetrazole catalyzed Michael addition of carbonyl compounds to nitroalkenes. Tetrahedron-Asymmetry 18, 157-164, doi:10.1016/j.tetasy.2007.01.011 (2007).
126   Abad, S. et al. Triplet reactivity and regio-/stereoselectivity in the macrocyclization of diastereomeric ketoprofen-quencher conjugates via remote hydrogen abstractions. Journal of the American Chemical Society 129, 7407-7420, doi:10.1021/ja0712827 (2007).


2006

125   Polo, V., Domingo, L. R. and ; Andres, J. Better understanding of the ring-cleavage process of cyanocyclopropyl anionic derivatives. A theoretical study based on the electron localization function. Journal of Organic Chemistry 71, 754-762, doi:10.1021/jo052117h (2006).
124   Leo, E. A., Domingo, L. R., Miranda, M. A. and ; Tormos, R. Photogeneration and reactivity of 1,n-diphenyl-1,n-azabiradicals. Journal of Organic Chemistry 71, 4439-4444, doi:10.1021/jo0601967 (2006).
123   Jaramillo, P., Domingo, L. R. and ; Perez, P. Towards an intrinsic nucleofugality scale: The leaving group (LG) ability in CH(3)LG model system. Chemical Physics Letters 420, 95-99, doi:10.1016/j.cplett.2005.12.047 (2006).
122   Gonzalez-Bejar, M., Stiriba, S. E., Domingo, L. R., Perez-Prieto, J. and ; Miranda, M. A. Mechanism of triplet photosensitized Diels-Alder reaction between indoles and cyclohexadienes: Theoretical support for an adiabatic pathway. Journal of Organic Chemistry 71, 6932-6941, doi:10.1021 jo061078m (2006).
121   Domingo, L. R., Saez, J. A., Palmucci, C., Sepulveda-Arques, J. and ; Gonzalez-Rosende, M. E. A DFT study for the formation of imidazo1,2-c pyrimidines through an intramolecular Michael addition. Tetrahedron 62, 10408-10416, doi:10.1016/j.tet.2006.08.066 (2006).
120   Domingo, L. R., Picher, M. T., Arroyo, P. and ; Saez, J. A. 1,3-dipolar cycloadditions of electrophilically activated benzonitrile N-oxides. Polar cycloaddition versus oxime formation. Journal of Organic Chemistry 71, 9319-9330, doi:10.1021/jo0613986 (2006).
119   Domingo, L. R., Picher, M. T. and ; Arroyo, P. Towards an understanding of the polar Diels-Alder reactions of nitrosoalkenes with enamines: A theoretical study. European Journal of Organic Chemistry, 2570-2580, doi:10.1002 ejoc.200500978 (2006).
118   Domingo, L. R. and ; Perez-Prieto, J. Exploring two-state reaction pathways in the photodimerization of cyclohexadiene. Chemphyschem 7, 614-618, doi:10.1002/cphc.200500431 (2006).
117   Domingo, L. R., Perez, P. and ; Contreras, R. pi-Strain-induced electrophilicity in small cycloalkynes: A DFT analysis of the polar cycloaddition of cyclopentyne towards enol ethers. European Journal of Organic Chemistry, 498-506, doi:10.1002/ejoc.200500466 (2006).
116   Domingo, L. R., Arno, M., Merino, P. and ; Tejero, T. A DFT study of the molecular mechanisms of the nucleophilic addition of ester-derived lithium enolates and silyl ketene acetals to nitrones: Effects of the Lewis acid catalyst. European Journal of Organic Chemistry, 3464-3472, doi:10.1002 ejoc.200600105 (2006).
115   Castro, E. A. et al. Experimental and theoretical study on the substitution reactions of aryl 2,4-dinitrophenyl carbonates with quinuclidines.Tetrahedron 62, 2555-2562, doi:10.1016/j.tet.2005.12.044 (2006).
114   Camps, P. et al. Highly diastereoselective one-pot synthesis of spiro{cyclopenta a indene-2,2 '-indene}diones from 1-indanones and aromatic aldehydes. Journal of Organic Chemistry 71, 3464-3471, doi:10.1021/jo0600095 (2006).
113   Berski, S., Andres, J., Silvi, B. and ; Domingo, L. R. New findings on the Diels-Alder reactions. An analysis based on the bonding evolution theory. Journal of Physical Chemistry A 110, 13939-13947, doi:10.1021/jp068071t (2006).
112   Alves, C. N., Carneiro, A. S., Andres, J. and ; Domingo, L. R. A DFT study of the Diels-Alder reaction between methyl acrolein derivatives and cyclopentadiene. Understanding the effects of Lewis acids catalysts based on sulfur containing boron heterocycles. Tetrahedron 62, 5502-5509, doi:10.1016/j.tet.2006.03.037 (2006).


2005

111   Zaragoza, R. J., Aurell, M. J. and ; Domingo, L. R. The role of the transfer group in the intramolecular 5+2 cycloadditions of substituted beta-hydroxy-gamma-pyrones: a DFT analysis. Journal of Physical Organic Chemistry 18, 610-615, doi:10.1002/poc.910 (2005).
110   Saez, J. A., Arno, M. and ; Domingo, L. R. Lewis acid induced 4+3 cycloadditions of 2-silyloxyacroleins. Insights on the mechanism from a DFT analysis. Tetrahedron 61, 7538-7545, doi:10.1016/j.tet.2005.05.067 (2005).
109   Polo, V., Domingo, L. R. and ; Andres, J. Toward an understanding of the catalytic role of hydrogen-bond donor solvents in the hetero-Diels-Alder reaction between acetone and butadiene derivative. Journal of Physical Chemistry A 109, 10438-10444, doi:10.1021/jp054048a (2005).
108   Leo, E. A., Tormos, R., Monti, S., Domingo, L. R. and ; Miranda, M. A. Intramolecular NH/pi complexes of 2-allylaniline derivatives in the ground and excited states. Journal of Physical Chemistry A 109, 1758-1763, doi:10.1021 jp046031o (2005).
107   Izquierdo, M. A., Domingo, L. R. and ; Miranda, M. A. Theoretical calculations on the cycloreversion of oxetane radical cations. Journal of Physical Chemistry A 109, 2602-2607, doi:10.1021/jp045832o (2005).
106   Domingo, L. R., Perez, P. and ; Contreras, R. A DFT analysis of the strain-induced regioselective 2+2 cycloaddition of benzyne possessing fused four-membered ring. Letters in Organic Chemistry 2, 68-73, doi:10.2174 1570178053399958 (2005).
104   Contreras, R., Andres, J., Domingo, L. R., Castillo, R. and ; Perez, P. Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons. Tetrahedron 61, 417-422, doi:10.1016/j.tet.2004.10.085 (2005).
103   Castillo, R., Andres, J. and ; Domingo, L. R. Lewis acid mediated domino reaction between 2-cyclohexenone and methyl azide -A DFT study. European Journal of Organic Chemistry, 4705-4709, doi:10.1002 ejoc.200500223 (2005).
102   Azzouzi, S. et al. High chemoselectivity of C=S dipolarophile in 1,3-dipolar cycloaddition of nitrilimines and 1,1,4-triazepin-5-one derivatives: experimental, theoretical and X-ray study. Journal of Physical Organic Chemistry 18, 522-528, doi:10.1002/poc.892 (2005).
101   Arroyo, P., Picher, M. T., Domingo, L. R. and ; Terrier, F. A DFT study of the polar Diels-Alder reaction between 4-aza-6-nitrobenzofuroxan and cyclopentadiene. Tetrahedron 61, 7359-7365, doi:10.1016/j.tet.2005.05.080 (2005).
100   Arno, M., Zaragoza, R. J. and ; Domingo, L. R. Density functional theory study of the 5-pyrrolidin-2-yltetrazole-catalyzed aldol reaction. Tetrahedron-Asymmetry 16, 2764-2770, doi:10.1016/j.tetasy.2005.06.034 (2005).
99    Arno, M., Zaragoza, R. J. and ; Domingo, L. R. Lewis acid induced 2+2 cycloadditions of silyl enol ethers with alpha,beta-unsaturated esters: A DFT analysis. European Journal of Organic Chemistry, 3973-3979, doi:10.1002 ejoc.200500188 (2005).


2004

98    Perez-Prieto, J., Stiriba, S. E., Gonzalez-Bejar, M., Domingo, L. R. and ; Miranda, M. A. Diels-alder reaction between indoles andcyclohexadienes photocatalyzed by pi,pi* aromatic ketones. Organic Letters 6, 3905-3908, doi:10.1021/ol048520c (2004).
97    Perez-Prieto, J. et al. Geometrical effects on the intramolecular quenching of pi,pi * aromatic ketones by phenols and indoles. Journal of Organic Chemistry 69, 8618-8625, doi:10.1021/jo048973v (2004).
96    Hamdach, A. et al. Novel examples of the N-methyl effect on cyclisations of N-Boc derivatives of amino alcohols. A theoretical study.Tetrahedron 60, 12067-12073, doi:10.1016/j.tet.2004.10.038 (2004).
95    Domingo, L. R. and ; Picher, M. T. A DFT study of the Huisgen 1,3-dipolar cycloaddition between hindered thiocarbonyl ylides andtetracyanoethylene. Tetrahedron 60, 5053-5058, doi:10.1016/j.tet.2004.04.024 (2004).
94    Domingo, L. R., Perez, P. and ; Contreras, R. Reactivity of the carbon-carbon double bond towards nucleophilic additions. A DFT analysis.Tetrahedron 60, 6585-6591, doi:10.1016/j.tet.2004.06.003 (2004).
93    Domingo, L. R. Why do electron-deficient dienes react rapidly in diels-alder reactions with electron-deficient ethylenes? A density functional theory analysis. European Journal of Organic Chemistry, 4788-4793, doi:10.1002 ejoc.20040522 (2004).
92    Aurell, M. J., Domingo, L. R., Perez, P. and ; Contreras, R. A theoretical study on the regioselectivity of 1,3-dipolar cycloadditions using DFT-based reactivity indexes. Tetrahedron 60, 11503-11509, doi:10.1016 j.tet.2004.09.057 (2004).
91    Arroyo, P., Picher, M. T. and ; Domingo, L. R. The domino reaction between 4,6-dinitrobenzofuroxan and cyclopentadiene. Insights on the nature of the molecular mechanism. Journal of Molecular Structure-Theochem 709, 45-52, doi:10.1016/j.theochem.2003.10.072 (2004).
90    Arno, M., Zaragoza, R. J. and ; Domingo, L. R. The nucleophilic addition of nitrones to carbonyl compounds: insights on the nature of the mechanism of the L-proline induced asymmetric reaction from a DFT analysis. Tetrahedron-Asymmetry 15, 1541-1549, doi:10.1016/j.tetasy.2004.03.031 (2004).
89    Arno, M., Picher, M. T., Domingo, L. R. and ; Andres, J. Understanding the nature of the molecular mechanisms associated with the competitive Lewis acid catalyzed 4+2 and 4+3 cycloadditions between arylidenoxazolone systems and cyclopentadiene: A DFT analysis.Chemistry-a European Journal 10, 4742-4749, doi:10.1002/chem.200400277 (2004).


2003

88    Testa, L. et al. Experimental and theoretical investigations for the regio and stereoselective transformation of trans 1,2,3-trisubstitutedaziridines into trans oxazolidin-2-ones. Tetrahedron 59, 677-683, doi:10.1016s0040-4020(02)01565-x (2003).
87    Saez, J. A., Arno, M. and ; Domingo, L. R. Lewis acid-catalyzed 4+3 cycloaddition of 2-(trimethyl silyloxy)acrolein with furan. Insight on the nature of the mechanism from a DFT analysis. Organic Letters 5, 4117-4120, doi:10.1021/ol035652h (2003).
86    Saez, J. A., Arno, M. and ; Domingo, L. R. A DFT study for the regioselective 1,3-dipolar cycloadditions of nitrile N-oxides towardalkynylboronates. Tetrahedron 59, 9167-9171, doi:10.1016/j.tet.2003.09.050 (2003).
85    Pischel, U., Abad, S., Domingo, L. R., Bosca, F. and ; Miranda, M. A. Diastereomeric differentiation in the quenching of excited states by hydrogen donors. Angewandte Chemie-International Edition 42, 2531-2534, doi:10.1002/anie.200250442 (2003).
84    Perez-Prieto, J. et al. Photoreaction between 2-benzoylthiophene and phenol or indole. Journal of Organic Chemistry 68, 5104-5113, doi:10.1021 jo034225e (2003).
83    Perez, P., Domingo, L. R., Aurell, A. J. and ; Contreras, R. Quantitative characterization of the global electrophilicity pattern of some reagents involved in 1,3-dipolar cycloaddition reactions. Tetrahedron 59, 3117-3125, doi:10.1016/s0040-4020(03)00374-0 (2003).
82    Leo, E. A. et al. Photogeneration of o-quinone methides from o-cycloalkenylphenols. Journal of Organic Chemistry 68, 9643-9647, doi:10.1021/jo034918v (2003).
81    Domingo, L. R., Zaragoza, R. J. and ; Williams, R. M. Studies on the biosynthesis of paraherquamide A and VM99955. A theoretical study ofintramolecular Diels-Alder cycloaddition. Journal of Organic Chemistry 68, 2895-2902, doi:10.1021/jo020564g (2003).
80    Domingo, L. R., Perez, P. and ; Contreras, R. Electronic contributions to the sigma(p) parameter of the Hammett equation. Journal of Organic Chemistry 68, 6060-6062, doi:10.1021/jo030072j (2003).
79    Domingo, L. R., Gil, S., Parra, M., Saez, J. A. and ; Torres, M. Experimental and theoretical investigations for the tandem alkvlation-isomerization reactions between unsaturated carboxylic acids and allyl halides. Tetrahedron 59, 6233-6239, doi:10.1016/s0040-4020(03)01028-7 (2003).
78    Domingo, L. R., Aurell, M. J., Perez, P. and ; Contreras, R. Origin of the synchronicity on the transition structures of polar Diels-Alder reactions. Are these reactions 4+2 processes? Journal of Organic Chemistry 68, 3884-3890, doi:10.1021/jo020714n (2003).
77    Domingo, L. R. and ; Andres, J. Enhancing reactivity of carbonyl compounds via hydrogen-bond formation. A DFT study of the hetero-Diels-Alder reaction between butadiene derivative and acetone in chloroform. Journal of Organic Chemistry 68, 8662-8668, doi:10.1021/jo030156s (2003).
76    Berski, S., Andres, J., Silvi, B. and ; Domingo, L. R. The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the Diels-Alder reaction between ethylene and 1,3-butadiene. Journal of Physical Chemistry A 107, 6014-6024, doi:10.1021/jp030272z (2003).
75    Arno, M. and ; Domingo, L. R. Theozyme for antibody aldolases. Characterization of the transition-state analogue. Organic and ; BiomolecularChemistry 1, 637-643, doi:10.1039/b209636f (2003).


2002

74    Domingo, L. R., Aurell, M. J., Perez, P. and ; Contreras, R. Quantitative characterization of the global electrophilicity power of common dienedienophile pairs in Diels-Alder reactions. Tetrahedron 58, 4417-4423, doi:10.1016/s0040-4020(02)00410-6 (2002).
73    Domingo, L. R., Aurell, M. J., Perez, P. and ; Contreras, R. Quantitative characterization of the local electrophilicity of organic molecules.Understanding the regioselectivity on Diels-Alder reactions. Journal of Physical Chemistry A 106, 6871-6875, doi:10.1021/jp020715j (2002).
72    Domingo, L. R. and ; Aurell, M. J. Density functional theory study of the cycloaddition reaction of furan derivatives with masked o-benzoquinones. Does the furan act as a dienophile in the cycloaddition reaction? Journal of Organic Chemistry 67, 959-965, doi:10.1021/jo011003c (2002).
71    Domingo, L. R., Asensio, A. and ; Arroyo, P. Density functional theory study of the Lewis acid-catalyzed Diels-Alder reaction of nitroalkeneswith vinyl ethers using aluminum derivatives. Journal of Physical Organic Chemistry 15, 660-666, doi:10.1002/poc.529 (2002).
70    Domingo, L. R., Arno, M., Contreras, R. and ; Perez, P. Density functional theory study for the cycloaddition of 1,3-butadienes with dimethylacetylenedicarboxylate. Polar stepwise vs concerted mechanisms. Journal of Physical Chemistry A 106, 952-961, doi:10.1021/jp012603i (2002).
69    Domingo, L. R., Andres, J. and ; Alves, C. N. A DFT study of the molecular mechanisms of the Diels-Alder reaction between cyclopentadieneand 3-phenyl-1-(2-pyridyl)-2-propen-1-one -Role of the Zn2+ Lewis acid catalyst and water solvent. European Journal of Organic Chemistry, 2557-2564 (2002).
68    Domingo, L. R. A density functional theory study for the Diels-Alder reaction between N-acyl-1-aza-1,3-butadienes and vinylamines. Lewis acid catalyst and solvent effects. Tetrahedron 58, 3765-3774, doi:10.1016 s0040-4020(02)00326-5 (2002).
67    Arno, M. and ; Domingo, L. R. Density functional theory study of the mechanism of the proline-catalyzed intermolecular aldol reaction. Theoretical Chemistry Accounts 108, 232-239, doi:10.1007/s00214-002-0381-7 (2002).
66    Alves, C. N. et al. An AMI theoretical study on the effect of Zn2+ Lewis acid catalysis on the mechanism of the cycloaddition between 3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene. Tetrahedron 58, 2695-2700, doi:10.1016/s0040-4020(02)00072-8 (2002).


2001

65    Domingo, L. R. and ; Zaragoza, R. J. A theoretical study of the selectivity for the domino 5+2 / 4+2 cycloadditions of gamma-pyrones bearing tethered alkenes with substituted 1,3-butadienes. Tetrahedron 57, 5597-5606, doi:10.1016/s0040-4020(01)00464-1 (2001).
64    Domingo, L. R., Oliva, M. and ; Andres, J. A PM3 study of the molecular mechanism for the cycloaddition between cyclopentadiene andprotonated pyridine-imine derivatives. Journal of Molecular Structure-Theochem 544, 79-90, doi:10.1016/s0166-1280(01)00370-0 (2001).
63    Domingo, L. R., Oliva, M. and ; Andres, J. A theoretical study of the reaction between cyclopentadiene and protonated imine derivatives: A shift from a concerted to a stepwise molecular mechanism. Journal of Organic Chemistry 66, 6151-6157, doi:10.1021/jo0015422 (2001).
62    Domingo, L. R. and ; Aurell, M. J. Theoretical study on the mechanism of the domino reactions of tertiary alpha-cyano-enamines and dimethylacetylenedicarboxylate. Tetrahedron 57, 169-177, doi:10.1016s0040-4020(00)00989-3 (2001).
61    Domingo, L. R. A theoretical study of the molecular mechanism of the reaction between N,N-dimethylmethyleneammonium cation andcyclopentadiene. Journal of Organic Chemistry 66, 3211-3214, doi:10.1021 jo001332p (2001).
60    Chuchani, G., Rotinov, A., Andres, J., Domingo, L. R. and ; Safont, V. S. A combined experimental and theoretical study of the homogeneous, unimolecular decomposition kinetics of 3-chloropivalic acid in the gas phase. Journal of Physical Chemistry A 105, 1869-1875, doi:10.1021/jp003560t (2001).
59    Arno, M. and ; Domingo, L. R. Using theozymes for designing transition-state analogs for the intramolecular aldol reaction of delta-diketones. International Journal of Quantum Chemistry 83, 338-347, doi:10.1002/qua.1070 (2001).


2000

58    Domingo, L. R. and ; Zaragoza, R. J. Toward an understanding of the mechanisms of the intramolecular 5+2 cycloaddition reaction of gamma-pyrones bearing tethered alkenes. A theoretical study. Journal of Organic Chemistry 65, 5480-5486, doi:10.1021/jo000061f (2000).
57    Domingo, L. R., Picher, M. T. and ; Andres, J. Toward an understanding of the selectivity in domino reactions. A DFT study of the reaction between acetylenedicarboxylic acid and 1,3-bis(2-furyl) propane. Journal of Organic Chemistry 65, 3473-3477, doi:10.1021/jo000030k (2000).
56    Domingo, L. R. and ; Asensio, A. A DFT study of the domino inter 4+2 /intra 3+2 cycloaddition reactions of nitroalkenes with enol ethers. Journal of Organic Chemistry 65, 1076-1083, doi:10.1021/jo991507z (2000).
55    Domingo, L. R. Theoretical study of 1,3-dipolar cycloaddition reactions with inverse electron demand -A DFT study of the Lewis acid catalyst and solvent effects in the reaction of nitrones with vinyl ethers. European Journal of Organic Chemistry, 2265-2272 (2000).
54    Domingo, L. R. A density functional theory study of the chemoselectivity and regioselectivity of the domino cycloaddition reactions ofnitroalkenes with substituted alkenes. Theoretical Chemistry Accounts 104, 240-246, doi:10.1007/s002140000131 (2000).
53    Carda, M. et al. Stereoselective 1,3-dipolar cycloadditions of a chiral nitrone derived from erythrulose. An experimental and DFT theoretical study. Journal of Organic Chemistry 65, 7000-7009, doi:10.1021/jo0009651 (2000).
52    Asensio, G. et al. First synthesis of the chiral mixed O/S ligands, 1,2-sulfinyl thiols: application as chiral proton sources in enantioselectiveprotonations of enolates. Tetrahedron-Asymmetry 11, 3481-3493, doi:10.1016 s0957-4166(00)00330-x (2000).


1999

51    Rotinov, A., Chuchani, G., Andres, J., Domingo, L. R. and ; Safont, V. S. A combined experimental and theoretical study of the unimolecularelimination kinetics of 2-alkoxypropionic acids in the gas phase. Chemical Physics 246, 1-12, doi:10.1016/s0301-0104(99)00137-8 (1999).
50    Oliva, M. et al. Theoretical study of the molecular mechanism of the domino pathways for squarate ester sequential reactions. Journal of Physical Organic Chemistry 12, 61-68, doi:10.1002 (sici)1099-1395(199901)12:1<61::aid-poc93>3.0.co;2-5 (1999).
49    Gonzalez-Rosende, M. E. et al. Domino reaction between 2-acylfurans and diethyl azodicarboxylate: a combined experimental, theoretical, X-ray and dynamic NMR study. Journal of the Chemical Society-Perkin Transactions 2, 73-79, doi:10.1039/a806628k (1999).
48    Domingo, L. R., Picher, M. T., Safont, V. S., Andres, J. and ; Chuchani, G. Theoretical study of the mechanisms for the alkoxyacetic acids decomposition. Journal of Physical Chemistry A 103, 3935-3943, doi:10.1021/jp984225w (1999).
47    Domingo, L. R., Picher, M. T. and ; Aurell, M. J. A DFT characterization of the mechanism for the cycloaddition reaction between 2-methylfuran and acetylenedicarboxylic acid. Journal of Physical Chemistry A 103, 11425-11430, doi:10.1021/jp992579x (1999).
46    Domingo, L. R., Picher, M. T., Andres, J. and ; Oliva, M. Theoretical study on the molecular mechanism of the domino cycloadditions betweendimethyl acetylenedicarboxylate and naphthaleno-and anthracenofuranophane. Journal of Organic Chemistry 64, 3026-3033, doi:10.1021/jo981442k (1999).
45    Domingo, L. R., Picher, M. T. and ; Andres, J. PM3 study of the domino reaction of nitroalkenes with silyl enol ethers. Journal of Physical Organic Chemistry 12, 24-30, doi:10.1002 (sici)1099-1395(199901)12:1<24::aid-poc94>3.0.co;2-b (1999).
44    Domingo, L. R., Arno, M. and ; Andres, J. Influence of reactant polarity on the course of the inverse-electron-demand Diels-Alder reaction. A DFT study of regio-and stereoselectivity, presence of Lewis acid catalyst, and inclusion of solvent effects in the reaction between nitroetheneand substituted ethenes. Journal of Organic Chemistry 64, 5867-5875, doi:10.1021/jo990331y (1999).
43    Domingo, L. R. Theoretical study of the 1,3-dipolar cycloaddition reactions of azomethine ylides. A DFT study of reaction betweentrifluoromethyl thiomethyl azomethine ylide and acronitrile. Journal of Organic Chemistry 64, 3922-3929, doi:10.1021/jo9822683 (1999).
42    Contreras, R., Domingo, L. R., Andres, J., Perez, P. and ; Tapia, O. Nonlocal (pair site) reactivity from second-order static density response function: Gas-and solution-phase reactivity of the acetaldehyde enolate as a test case. Journal of Physical Chemistry A 103, 1367-1375, doi:10.1021/jp982801i (1999).
41    Aurell, M. J., Domingo, L. R., Mestres, R., Munoz, E. and ; Zaragoza, R. J. Conjugate addition of organolithium reagents to alpha,beta-unsaturated carboxylic acids. Tetrahedron 55, 815-830, doi:10.1016 s0040-4020(98)01073-4 (1999).
40    Arno, M., Domingo, L. R. and ; Andres, J. Designing a transition state analogue for the disfavored intramolecular Michael addition of 2-(2-hydroxyethyl) acrylate esters. Journal of Organic Chemistry 64, 9164-9169, doi:10.1021 jo991117c (1999).


1998

39    Safont, V. S. et al. A theoretical study of the addition of CH3MgCl to chiral alpha-alkoxy carbonyl compounds. Theochem-Journal of Molecular Structure 426, 263-275, doi:10.1016/s0166-1280(97)00328-x (1998).
38    Safont, V. S., Andres, J. and ; Domingo, L. R. A theoretical study on the decomposition mechanism of beta-propiolactone and beta-butyrolactone. Chemical Physics Letters 288, 261-269, doi:10.1016 s0009-2614(98)00331-5 (1998).
37    Li, H. et al. Synthesis and characterization of molybdenum(VI)-dioxo complexes containing both coordinated thiolate and carboxylategroups. Reactions with their own free ligands. Inorganica Chimica Acta 268, 145-150, doi:10.1016/s0020-1693(97)05725-3 (1998).
36    Domingo, L. R., Picher, M. T. and ; Zaragoza, R. J. Toward an understanding of the molecular mechanism of the reaction between 1-methylpyrrole and dimethyl acetylenedicarboxylate. An ab initio study. Journal of Organic Chemistry 63, 9183-9189, doi:10.1021/jo980036y (1998).
35    Domingo, L. R., Picher, M. T., Arno, M., Andres, J. and ; Safont, V. S. The tandem Diels-Alder reaction between acetylenedicarboxyaldehydeand N,N '-dipyrrolylmethane. An ab initio study of the molecular mechanisms. Theochem-Journal of Molecular Structure 426, 257-262, doi:10.1016 s0166-1280(97)00327-8 (1998).
34    Domingo, L. R., Arno, M. and ; Andres, J. An understanding of molecular mechanism of domino cycloadditions. Density functional theory study of the reaction between hexafluorobut-2-yne and N,N '-dipyrrolylmethane. Journal of the American Chemical Society 120, 1617-1618, doi:10.1021/ja972887d (1998).
33    Bosch-Montalva, M. T., Domingo, L. R., Jimenez, M. C., Miranda, M. A. and ; Tormos, R. Ground and excited-state intramolecularinteractions in phenol-olefin bichromophoric compounds. Journal of the Chemical Society-Perkin Transactions 2, 2175-2179, doi:10.1039/a802625d (1998).
32    Asensio, G., Aleman, P. A., Domingo, L. R. and ; Medio-Simon, M. Remarkable effect of lithium bromide in the enantioselective protonationwith alpha-sulfinyl alcohols. Tetrahedron Letters 39, 3277-3280, doi:10.1016 s0040-4039(98)00469-9 (1998).
31    Asensio, G., Aleman, P., Gil, J., Domingo, L. R. and ; Medio-Simon, M. Stereoselection parameters and theoretical model in theenantioselective protonation of enolates with alpha-sulfinyl alcohols. Journal of Organic Chemistry 63, 9342-9347, doi:10.1021/jo981294y (1998).
30    Andres, J., Domingo, L. R., Picher, M. T. and ; Safont, V. S. Comparative theoretical study of transition structures, barrier heights, and reaction energies for the intramolecular tautomerization in acetaldehyde vinyl alcohol and acetaldimine/vinylamine systems. International Journal of Quantum Chemistry 66, 9-24, doi:10.1002 (sici)1097-461x(1998)66:1<9::aid-qua2>3.3.co;2-v (1998).


1997

29    Safont, V. S., Moliner, V., Andres, J. and ; Domingo, L. R. Theoretical study of the elimination kinetics of carboxylic acid derivatives in the gas phase. Decomposition of 2-chloropropionic acid. Journal of Physical Chemistry A 101, 1859-1865, doi:10.1021/jp962533t (1997).
28    Rosende, E. G. et al. Ring cleavage of 1-alkyl-2-aryl-3-(hydroxymethyl)pyrrolidines. A PM3 semiempirical study of molecular mechanism.Journal of the Chemical Society-Perkin Transactions 2, 643-648, doi:10.1039/a603191i (1997).
27    Domingo, L. R., SanzCervera, J. F., Williams, R. M., Picher, M. T. and ; Marco, J. A. Biosynthesis of the brevianamides. An ab initio study of the biosynthetic intramolecular Diels-Alder cycloaddition. Journal of Organic Chemistry 62, 1662-1667, doi:10.1021/jo9621783 (1997).
26    Domingo, L. R., Picher, M. T., Andres, J., Safont, V. S. and ; Chuchani, G. Potential energy surface for the decomposition of mandelic acid.Chemical Physics Letters 274, 422-428, doi:10.1016/s0009-2614(97)00692-1 (1997).
25    Domingo, L. R., Picher, M. T., Andres, J. and ; Safont, V. S. Ab initio study of stereo-and regioselectivity in the Diels-Alder reaction between 2-phenylcyclopentadiene and alpha-(methylthio) acrylonitrile. Journal of Organic Chemistry 62, 1775-1778, doi:10.1021/jo961785n (1997).
24    Domingo, L. R., Andres, J., Moliner, V. and ; Safont, V. S. Theoretical study of the gas phase decomposition of glycolic, lactic, and 2-hydroxyisobutyric acids. Journal of the American Chemical Society 119, 6415-6422, doi:10.1021/ja962857v (1997).
23    Carda, M. et al. Diastereoselectivity of the reactions of organometallic reagents with protected D-and L-erythrulose 1,3-O-ethylideneacetals. Tetrahedron-Asymmetry 8, 559-577, doi:10.1016/s0957-4166(96)00540-x (1997).


1996

22    Domingo, L. R., Picher, M. T., Andres, J., Moliner, V. and ; Safont, V. S. Theoretical study of the solvent effects on the mechanisms of addition of dimethyl acetylenedicarboxylate to 1-methyl-2-vinylpyrrole. Tetrahedron 52, 10693-10704, doi:10.1016/0040-4020(96)00591-1 (1996).
21    Domingo, L. R., Picher, M. T. and ; Andres, J. Transition structure for hydride transfer from cyclopropene to azirinium cation. Theochem-Journal of Molecular Structure 363, 257-261 (1996).
20    Domingo, L. R., Jones, R. A., Picher, M. T. and ; SepulvedaArques, J. Theoretical study of the reactions of 1-methyl-2-vinylpyrrole with methylpropiolate and with dimethyl acetylenedicarboxylate. Theochem-Journal of Molecular Structure 362, 209-213 (1996).
19    Domingo, L. R., Gil, S., Mestres, R. and ; Picher, M. T. Theoretical model of solvated lithium dienediolates of methyl substituted 2-butenoic acids. Tetrahedron 52, 11105-11112, doi:10.1016/0040-4020(96)00627-8 (1996).
18    Domingo, L. R., Arno, M. and ; Andres, J. The tandem Diels-Alder reaction of dimethyl acetylenedicarboxylate to bicyclopentadiene. A theoretical study of the molecular mechanisms. Tetrahedron Letters 37, 7573-7576, doi:10.1016 0040-4039(96)01832-1 (1996).
17    Andres, J. et al. On transition structures for hydride transfer step: A theoretical study of the reaction catalyzed by dihydrofolate reductaseenzyme. Bioorganic Chemistry 24, 10-18, doi:10.1006/bioo.1996.0002 (1996).
16    Andres, J., Moliner, V., Safont, V. S., Domingo, L. R. and ; Picher, M. T. On transition structures for hydride transfer step in enzyme catalysis. A comparative study on models of glutathione reductase derived from semiempirical, HF, and DFT methods. Journal of Organic Chemistry 61, 7777-7783, doi:10.1021/jo960803y (1996).


1995

15    Marco, J. A. et al. INFLUENCE OF CONFORMATIONAL FACTORS ON ACID-CATALYZED CYCLIZATIONS OF GERMACRANOLIDES -MOLECULAR-STRUCTURE OF THE CYCLIZATION PRODUCTS OF GALLICIN AND 8-ALPHA-HYDROXYGALLICIN (SHONACHALIN-A). Liebigs Annalen, 1837-1841 (1995).
14    Domingo, L. R., Picher, M. T., Sanz, V. and ; Palanca, P. MOO2(SCPH(2)CO(2))(2) (2-) AND MOO(SCPH(2)CO(2))(2) (-) ANION COMPLEXES -A THEORETICAL STRUCTURE CHARACTERIZATION. Theochem-Journal of Molecular Structure 339, 201-208 (1995).
13    Domingo, L. R., Jones, R. A., Picher, M. T. and ; Sepulvedaarques, J. THEORETICAL-STUDY OF THE REACTION OF DIMETHYL ACETYLENEDICARBOXYLATE WITH 1-METHYL-2-(1-SUBSTITUTED VINYL)PYRROLES. Tetrahedron 51, 8739-8748, doi:10.10160040-4020(95)00490-y (1995).
12    Domingo, L. R., Gil, S., Mestres, R. and ; Picher, M. T. THEORETICAL-MODEL OF SOLVATED LITHIUM DIENEDIOLATE OF 2-BUTENOIC ACID. Tetrahedron 51, 7207-7214, doi:10.1016/0040-4020(95)00345-9 (1995).
11    Andres, J., Moliner, V., Domingo, L. R., Picher, M. T. and ; Krechl, J. A THEORETICAL-STUDY OF THE MOLECULAR MECHANISM FOR THE OXIDATION OF METHANOL BY PQQ. Journal of the American Chemical Society 117, 8807-8815, doi:10.1021/ja00139a014 (1995).


1985-1991

10    Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. CONVERSION OF ABIETIC ACID INTO STEROIDS -SYNTHESIS OF METHYL 14,15-DIOXO-ISOPIMARAN-18-OATE. Anales De Quimica 87, 270-273 (1991).
9     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. CONVERSION OF RESIN ACIDS INTO STEROIDAL COMPOUNDS -A REVIEW. Organic Preparations and Procedures International 23, 321-and ; (1991).
8     Abad, A. et al. TRANSFORMATION OF RESIN ABIETIC ACID INTO A PREGNANE-TYPE STEROID. Canadian Journal of Chemistry-Revue Canadienne De Chimie 69, 379-382, doi:10.1139/v91-058 (1991).
7     Abad, A. et al. CONVERSION OF DEHYDROABIETIC ACID INTO 17-KETO-C-ARYL-18-NORSTEROIDS. Anales De Quimica 87, 116-122 (1991).
6     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. CONVERSION OF SANDARACOPIMARIC ACID INTO AN ANDROSTANE ANALOG STEROID. Journal of Organic Chemistry 55, 2369-2373, doi:10.1021/jo00295a026 (1990).
5     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. C-13 NUCLEAR-MAGNETIC-RESONANCE SPECTRA OF SEVERAL PODOCARPANE AND CASSANE DITERPENOIDS. Magnetic Resonance in Chemistry 28, 529-532, doi:10.1002/mrc.1260280611 (1990).
4     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. ERYTHROPHLEUM ALKALOIDS -SYNTHESIS OF (-)-4-EPI-CASSAMINE. Journal of the Chemical Society-Perkin Transactions 1, 1875-1883, doi:10.1039/p19890001875 (1989).
3     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. CONVERSION OF DEHYDROABIETIC ACID INTO 20-KETO-C-ARYL-18-NORSTEROIDS -FORMATION OF THE D-RING. Journal of Organic Chemistry 53, 3761-3765, doi:10.1021/jo00251a018 (1988).
2     Abad, A., Agullo, C., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. AN APPROACH TO ERYTHROPHLEUM ALKALOIDS -SYNTHESIS OF METHYL(-)-4-EPI-CASSAMATE. Tetrahedron Letters 27, 3289-3292, doi:10.1016/s0040-4039(00)84778-4 (1986).
1     Abad, A., Arno, M., Domingo, L. R. and ; Zaragoza, R. J. SYNTHESIS OF (+)-PODOCARP-8(14)-EN-13-ONE AND METHYL-(+)-13-OXO-PODOCARP-8(14)-EN-18-OATE FROM ABIETIC ACID. Tetrahedron 41, 4937-4940, doi:10.1016/s0040-4020(01)96734-1 (1985).


Views

[3+2] cycloaddition reactions

A useful classification for [3+2] cycloaddition reactions

Based on the MEDT study of the relationship between the structure of the Three-Atoms-Components (TACs) involved in [3+2] cycloaddition (32CA) reactions and their reactivity, these reactions are classified in:

Pseudodiradical-type(pr-type) 32CA reactions. These reactions are chacaterised by taking place with a very low activation energy and a very low global electron density transfer (GEDT) at the transition state structure (TS).

Carbenoid-type (cb-type) 32CA reactions. The feasibility of these reactions depends on their polar character,i.e. the nucleophilic character of the carbenoid TAC and the electrophilic character of the ethylene derivative.

Zwitterionic-type (zw-type) 32CA reactions. Like cb-type reactions, the feasibility of these reactions depends on their polar character,i.e. the nucleophilic character of the zwitterionic TAC and the electrophilic character of the ethylene derivative or vice versa.

L. R. Domingo, S. R. Emamian,Tetrahedron 2014, 70, 1267-1273.

L. R. Domingo, M. Ríos-Gutiérrez, P. Pérez, Tetrahedron 2016, 72, 1524-1532.


32CA reactions

32CA reactions

article

Non-classical CH···O hydrogen-bond determining the regio- and stereoselectivity in the [3 + 2] cycloaddition reaction of (Z)-C-phenyl-N-methylnitrone with dimethyl 2-benzylidenecyclopropane-1,1-dicarboxylate. A topological electron-density study.

Abdelmalek Khorief Nacereddine, Chafia Sobhi, Abdelhafid Djerourou,

Mar Ríos Gutiérrez and Luis R. Domingo

RSC Adv., 2015, 5, 99299–99311

The presence of the two CO2Me groups in the cyclopropane ring has a remarkable effect on selectivities favouring the ortho/endo path, in good agreement with the experimental data. Non-covalent interaction (NCI) analysis of the most favourable ortho/endo transition state structure reveals that the formation of a non-classical CH···O hydrogen-bond involving the nitrone C–H hydrogen is responsible for the selectivity experimentally found in this non-polar zw-type 32CA reaction. An electron localisation function (ELF) topological analysis along the most favourble reaction path allows explaining the formation of the C–C and O–C bonds through a non-concerted two-stage one-step mechanism.

Analysis NCI

Analysis NCI

Diels-Alderases: Reality or Fantasy?

Diels-Alderase Catalysing the Cyclisation Step in the Biosynthesis ofSpinosyn A: Reality or Fantasy?

Luis R. Domingo, Jose A. Sáez, Lydia Rhyman and Ponnadurai Ramasami.

Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology - Algorithms and Software Tools, Q.-N, Tran and H. R. Arabnia eds, Publisher: Elsevier/MK. pp 169-201 (2015)

The conversion of putative macrocyclic lactone into the tricyclic compound, as a key step in the biosynthesis of spinosyn A reported by Kim et al. (Nature, 2011, 473, 109), has been theoretically investigated using DFT methods. The relatively low activation free energy computed for the cyclisation process of the actual macrocyclic lactone, 21.0 kcal/mol, furnishes a rationalisation for a spontaneous (i.e. non-enzymatically catalysed) cyclisation process in the biosynthesis of spinosyn A. A geometrical analysis of putative macrocyclic lactone indicates that a slight strain on the lactone at the active site of the SpnF gene could decrease the activation free energy to ca. 16 kcal/mol. This non-specific participation of the enzyme, which accounts for the relatively low 500-fold acceleration that Kim et al. found in this gene, rules out the participation a specific Diels-Alderase.

Scheme

Scheme

Article

A DFT Study of the Mechanism of Brønsted Acid Catalysed Povarov Reactions.

Mar Ríos-Gutiérrez,Hatem Layeb, Luis R Domingo

Tetrahedron 2015, 71, 9339-9345

The molecular mechanism of the Brønsted acid (BA) catalysed Povarov reaction of N-phenyl-C-methoxycarbonyl imine with a methylene-cyclopropane (MCP) has been investigated using DFT methods at theMPWB1K/6-31G(d) level. This BA catalysed Povarov reaction is a domino process initialised by the formation of acationic intermediate which experiences a quick intramolecular Friedel-Craft reaction yielding the final tetrahydroquinoline.Protonation of imine nitrogen atom notably increases the electrophilicity of the corresponding species, accelerating the reaction through ionic processes. Analysis of the Parr functions in the initial nucleophilic attack of MCP to the protonated imine allows explaining the total regioselectivity experimentally observed. An electron localisation function quantum topological analysis of the bonding changes along the BA catalysed Povarov reaction permits a complete characterisation of the molecular mechanism.

Scheme

Scheme

Article

A Bonding Evolution Theory Study of the Mechanism of [3+2] Cycloaddition Reactions of Nitrones with Electron-Deficient Ethylenes

Mar Ríos-Gutiérrez, Patricia Pérez and Luis R. Domingo

RSC Adv. 2015, 15, 58464-58477

Dowload Open Access Article

The mechanism of zw-type [3+2] cycloaddition (32CA) reactions of nitrones with electron-deficient (ED) ethylenes has been studied using density functional theory (DFT) methods at the MPWB1K/6-31G(d) level of theory. An exploration of the potential energy surfaces associated with the four competitive reactive channels of the 32CA reaction between C-phenyl-N-methyl nitrone and acrolein indicates that the cycloaddition reaction takes place through a one-step mechanism. This cycloaddition reaction presents a moderate metaregioselectivity and a complete endo stereoselectivity, which is diminished in dichloromethane. Analysis of the DFT reactivity indices of the reagents allows explaining the participation of nucleophilic nitrones in zw-type 32CA reactions towards ED ethylenes. A bonding evolution theory (BET) study of the two endo regioisomeric reactive channels allows establishing the molecular mechanism of these relevant 32CA reactions. Both regioisomeric channels topologically take place along eight differentiated phases. While the formation of the C-C single bond follows Domingo’s recently proposed model, the formation of the O-C single bond takes place at the short distance of 1.6 Å through the donation of some electron density of the oxygen lone pairs of the nitrone to the b-conjugated carbon atom of acrolein. BET supports the non-concerted nature of these zw-type32CA reactions and makes it possible to reject the pericyclic mechanism proposed for them.

Scheme

Scheme

Article

Unraveling the Mechanism of the Ketene-Imine Staudinger Reaction. An ELF Quantum Topological Analysis

Luis R. Domingo, Mar Ríos-Gutiérrez, José A. Sáez

RSC Adv. 2015, 5, 37119–37129

Dowload Open Access Article

The mechanism of the ketene-imine Staudinger reaction (KI-S) between t-butyl-cyano ketene and N-phenyl phenylimine has been studied using DFT methods at the MPWB1K/6-311G(d) computational level. The reaction takes place through a two-step mechanism: i) the first step is the nucleophilic attack of the imine nitrogen lone pair on the central carbon of the ketene yielding a zwitterionic (ZW) intermediate; ii) the second step, which is the rate- and stereoselectivity-determining step, is a ring-closure process achieved by a nucleophilic attack of the terminal carbon atom of the ketene on the imine carbon atom. Due to the unfeasibility of a cis/trans and an E/Z stereoisomerisation at the ZW intermediates, trans and cis b-lactams are formed along the endo and exo stereoisomeric channels, respectively. An electron localisation function (ELF) quantum topological analysis of the bonding changes along the KI-S reaction permits a complete characterisation of the mechanism. The first step is associated with the formation of the N1-C4 single bond along the nucleophilic attack of imine nitrogen lone pair on the central carbon of ketene, while the second step is associated with a ring-closure process achieved by the C-to-C coupling of the C2 and C3 pseudoradical centers generated in the previous phases. The present theoretical study makes it possible to reject those analyses based on the FMO theory, in which HOMO/LUMO interactions along the nucleophilic attack of the imines on the ketenes and a feasible torquoelectronic effect along the conrotatory ring-closure step control the cis/trans stereoselectivity in the formation of b-lactams.

Staundinger reaction

Staundinger reaction

ARTICLE

A DFT Study of the Inter- and Intramolecular Aryne Ene Reactions

Eur. J. Org. Chem. 2826–2834 (2015)

The molecular mechanism of the inter- and intramolecular aryne ene reactions has been theoretically studied using DFT methods at the MPWB1K/6-311G(d,p) level. These reactions take place through a one-step mechanism via nearly asynchronous TSs in which the C-C single bond formation is slightly more advanced than the hydrogen transfer process. These ene reactions show very low activation enthalpies (< 1kcal/mol) being strongly exothermic by more than 73 kcal/mol. An electron localisation function (ELF) topological analysis of the changes of electron density along these ene reactions indicates that the bonding changes are non-concerted. ELF topological analysis of the electron density in the C1-C2 bonding region of benzyne points out that the 1,2-pseudodiradical vinyl structure more than a CC triple bond one is responsible for the very high reactivity of these species.

ENE REACTION OF ARYNES

ENE REACTION OF ARYNES

Article

A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes.

Luis R. Domingo, Mar Ríos-Gutiérrez and Patricia Pérez

Tetrahedron 2015, 71, 2421-2427,

The molecular mechanism of the ionic [2+2] cycloaddition (I-22CA) reactions of a keteniminium cation (KC) with acetylene and propyne has been investigated using DFT methods at the MPWB1K/6-311G(d,p) level. These I-22CA reactions take place via a two-step mechanism. The first step is the nucleophilic attack of these alkynes on the central carbon of KC, yielding cyclopropene intermediates, while the second step corresponds to the conversion of these intermediates into more stable cyclobuteniminium cations (CCs). The first step is the rate-determining step, while the second step is responsible for the formation of the two regioisomeric CCs experimentally observed in the reaction with propyne. Analysis of the DFT reactivity indices indicates that the strong electrophilic character of KC accounts for the feasibility of these I-22CA reactions. An ELF topological analysis of the changes of the electron density along the IRCs of the two reaction steps allows the molecular mechanism of these I-22CA reactions to be established.

ionic [2+2] cycloaddition reactions

ionic [2+2] cycloaddition reactions

Article

A Mechanistic Study of the Participation of Azomethine Ylides and Carbonyl Ylides in [3+2] Cycloaddition Reactions.

Tetrahedron 2015, 71, 1050-1057.

The participation of azomethine ylides (AYs) and carbonyl ylides (CYs) in [3+2] cycloaddition (32CA) reactions has been analysed at the DFT B3LYP/6-31G(d) level. The asymmetric substitution breaks the pseudodiradical character of the simplest three-atom-components (TACs), modifying their electrophilic and nucleophilic behaviours. These TACs react quickly towards electrophilic nitroethylene. However, while the reaction with AY takes place via a zw-type mechanism, the reaction with CY appears to take place via a pr-type mechanism. A different behaviour is found in the reactivity towards the nucleophilic methyl vinyl ether. While AY presents a high activation energy, CY presents a high reactivity via a pr-type mechanism. These reactions are completely regioselective, displaying exo stereoselectivity. The present study makes it possible to establish that the substitution provokes a different reactivity pattern in these TACs; while in CYs does not substantially modify their pr-type reactivity, AYs only participate in zw-type 32CA reactions towards electrophilic ethylenes.

32CA Reactions

32CA Reactions

Erroneous Concepts in Organic Chemistry

Why Houk's distortion/interaction energy model is an erroneous reactivity model.

Houk's distortion/interaction [J. Am. Chem. Soc., 2007, 129, 10646] model based on the fragmentation of the TS geometry is conceptually erroneous as both molecular energy and geometry depend on the electron-density, which physically is not divisible. Since the computed E*distorsion (E*d) is always higher than the real one, this model always underestimate the interaction energy E*int, which is the factor responsible for the feasibility of an organic reaction.

Download Personal Comments

ARTICLE

WHY DIELS-ALDER REACTIONS ARE NON-CONCERTED PROCESSES

J. Chil. Chem. Soc., 2014, 59, 2615.2618

download pdf

In this short manuscript, why Diels-Alder reactions are non-concerted processes is analyzed. Recent ELF topological analyses of cycloaddition mechanisms have evidenced that bonding changes take place along a sequential bond-breaking/bond-formation process. The most relevant topological behavior along these reactions is the formation of the new C-C single bonds by coupling of two pseudoradical carbons. Formation of these pseudoradical carbons is attained through the depopulation of the C-C double bonds present in the diene and ethylene. This demand provokes the rupture of the C-C double bonds at the begging of the reaction, and before the formation of the new C-C single bonds. Consequently, the C=C breaking and the C-C bond formation processes are non-concerted processes.

The point IRC-12 of the intermolecular DA reaction of 1-(hex-5-enyl)cyclohexa-1,3-diene shows that while the formation of the C1-C5 bond has begun, see the presence of the V(C1,C5) disynaptic basin, the formation of the C4-C6 bond has not started; see the presence of the V(C4) and V(C5) monosynaptic basins. On the other hand, formation of C2-C3 double bond takes place at the end of the reaction.

ELF IMDA reaction

ELF IMDA reaction

Article

Understanding the selectivity in the formation of d-lactams vs b-lactams in the Staudinger reactions of chloro-cyan-ketene with unsaturated imines. An DFT study.

RSC Adv. 2014, 4, 58559

Download Open Access Article

The reactions of chloro-cyan-ketene with two phenyl substituted unsaturated imines yielding b- or d-lactams have been investigated using DFT methods at the MPWB1K/6-311G(d,p) level in diethyl ether. The reactions are initialised by the nucleophilic attack of the unsaturated imines on the ketene with formation of zwitterionic intermediates. The subsequent C-C single bond formation at the imine carbon or at the b-conjugated position enables the formation of b- or d-lactams. Analysis of the energies involved in the two competitive channels explains the selectivity experimentally observed; in the absence of any steric hindrance, formation d-lactams is favoured over the formation of b-lactams. ELF topological analysis allows explaining the bonding changes along the two competitive channels. While formation of the N-C bond takes place by participation of the nitrogen lone pair, formation of the C-C bonds takes place through a retrodonation process involving the C-C double bond of the ketene and the C-N or C-C double bonds of the unsaturated imine. ELF topological analysis makes it possible to rule out an electrocyclic mechanism for the cyclisation step.

d-lactams vs b-lactams in Saudinger reactions

d-lactams vs b-lactams in Saudinger reactions

Article

Understanding the Polar Mechanism of the Ene Reaction.

A DFT Study.

Org. Biomol. Chem, 2014, 12, 7581-7590

The molecular mechanism of ene reactions has been characterised using DFT methods at the MPWB1K/6-311G(d,p) level of theory. Most reactions take place along a two-stage one-step mechanism in which the C-C bond formation takes place before the hydrogen transfer process. A very good correlation between the polar character of the reaction measured by the global electron density transfer at the transition state and the activation energy has been found. This behaviour allows establishing a useful classification of ene reactions in N-ene, having a very high activation energy, P-ene reactions having activation energies between 35 - 20 kcal/mol, and H-ene reactions having activation energies below 20 kcal/mol. ELF topological analysis permits the characterisation of the two-stage one-step mechanism associated with a two-centre nucleophilic /electrophilic interaction. Formation of the C-C single bond is achieved by the C-to-C coupling of two pseudodiradical centres formed at the two interacting carbon atoms in the first stage of the reaction. This topological analysis establishes that bonding changes are non-concerted. Finally, a DFT reactivity analysis makes it possible to characterise the electrophilic/nucleophilic behaviours of the reagents involved in ene reactions, and consequently, to predict the feasibility of ene reactions.

the Polar Mechanism of the Ene Reaction

the Polar Mechanism of the Ene Reaction

Article


Understanding the Mechanism of the Povarov Reaction. A DFT study.

RSC Adv., 2014,4, 25268

Download Open Access Article

The molecular mechanism of the Povarov reaction in acetonitrile has been studied at the MPWB1K/6-311G** level of theory. This reaction follows a domino process that comprises two sequential reactions: i) a Lewis acid catalysed aza-Diels-Alder (A-DA) reaction between a N-aryl imine and a nucleophilic ethylene yielding a formal [4+2] cycloadduct; ii) a stepwise 1,3-hydrogen shift at this intermediate affording the final tetrahydroquinoline. At this computational level, the Lewis acid catalysed A-DA reaction presents a two-step mechanism as a consequence of the large stabilisation of the corresponding zwitterionic intermediate. Our study allows establishing that the N-aryl substituent has no remarkable incidence in the activation energy, but the presence of a second C-aryl substituent has a relevant role in the reaction rate. Analysis of the DFT-based reactivity indices of the reagents provides further explanation of the behaviours of the mechanism of the A-DA reaction involved in the Povarov reaction.

Povarov Reaction

Povarov Reaction

Ionic Diels-Alder reactions

Ionic Diels-Alder reactions

Article

A DFT Analysis of the Participation of Zwitterionic TACs in

Polar[3+2]Cycloaddition Reactions.

Tetrahedron (2014) DOI: 10.1016/j.tet.2014.05.003

Unlike Diels-Alder reactions, which can be classified as non-polar Diels-Alder reactions with high activation energies, and polar Diels-Alder reactions with low activation energies [1],[3+2]cycloaddition (32CA) reactions lack a clear systematisation of their reactivity based on the nucleophilic/electrophilic behaviour of the reagents.

Based on the distortion/interaction energy model, Houk checked the 32CA reactions of nine different non-substituted tri-atom-components (TACs) with ethylene and acetylene, finding that the computed B3LYP/6-31G(d) activation enthalpies correlated very nicely with the distortion energies [2]. He concluded that the distortion energy of the TAC and ethylene or acetylene towards the TS is the major factor controlling the reactivity differences of TACs [2]. However, the distortion energy not has any chemical meaning because it depends on the TS geometry, thus does not providing any information about the structure/reactivity relationship of TACs

Very recently, we performed a structure/reactivity relationship study about the 32CA reactions of twelvenon-substitutedTACswith ethylene and acetylene, finding that the high reactivity of some TACs is due to itspseudodiradicalcharacter [3]. This study allowed establishing a useful classification of 32CA reactions intopseudodiradical-type (pr-type)reactions involving TACs with a highpseudodiradicalcharacter, which take place easily through an earlier TS with non-polar character, andzwitterionic-type(zw-type) reactions involving TACs with a high zwitterionic character, characterised by favourable nucleophilic/electrophilic interactions, taking place through polar TSs [3]. Considering that the simplest TACs of this series having a zwitterionic character presented low reactivity in non-polar processes towards ethyleneand acetylene, would be expected that the nucleophilic activation of these TACs and the electrophilic activation of ethylene, or vice versa, will favour the process towards a polar zw-typereaction.

In the present manuscript, a set of seven non-substituted TACs,showing a zwitterionic structureand low reactivity towards ethylene, has been studied using and nucleophilicity N reactivity indiceswthe electrophilicity defined within the conceptual DFT at the B3LYP/6-31G(d) level of theory. The general characteristic of these TACs is their high nucleophilic and a low electrophilic behaviour. Activation energies of the corresponding 32CA reaction computed at theMPWB1K/6-311G(d) level in dichloromethane point to that non-substituted TACsreact quickly toward dicyanoethylene showing their ability to react towards electron-deficient ethylenes. However, when the TACs are electrophilically activated by an appropriate substitution thereseems to be insufficient activation to react toward electron-rich ethylenes. The electrophilic activation of the TAC moiety for nucleophilic attacks was only determined by the coordination with a Lewis acid. All 32CA reactions studied in this work presented high regioselectivity. The polar character of these 32CA reactions is associated with the global charge transfer found at the TS, which is in agreement with azwitterionic-type(zw-type)mechanism. According to our results, the present theoretical study suggests that the substitution is required in both, TACs and the ethylene species, in order to experimentally perform these zw-type 32CA reactions under mild conditions.

1. Domingo, L. R.; Sáez, J. A.Org.Biomol. Chem.,2009,b7, 3576-3583.

2. Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187-10198.

3. Domingo, L. R.; Saez, J. A. J. Org.Chem. 2011,76, 373-379.

zw-type 32CA reactions

zw-type 32CA reactions

Article

The mechanism of ionic Diels-Alder reactions. A DFT study of the oxa-Povarov reaction.

RSC Adv. 2014, 4, 16567-16577

Download Open Access Article

The mechanism of the of ionic Diels-Alder (I-DA) reactions involved in oxa-Povarov reaction of a cationic aryl oxonium with cyclopentene and styrene has been studied using DFT methods at the B3LYP/6-31G* level.

While the I-DA reaction with cyclopentene takes place along atwo-stage one-stepmechanism, the presence of a phenyl substituent in styrene makes the mechanism of the I-DA reaction stepwise.

An electron localization function (ELF) bonding analysis of selected points along the IRCs of these I-DA reactions allows the establishment of a great similarity in bond formation along both one-step and two-step mechanisms.

The formation of the first C-C single bond begins in the short range of 1.95 - 1.90 Å, by the coupling of twopseudodiradicalcenters generated at the most electrophilic center of the cationic aryl oxonium and the most nucleophilic centers of cyclopentene and styrene, resulting in the global charge transfer that takes place along I-DA reactions. The use of the recently proposed radical Parr functions allows the characterization of the most electrophilic centers in cationic species and the most nucleophilic centers in anionic species.

Single-bond formation along the reaction coordinates

Single-bond formation along the reaction coordinates

An quantum chemical topological analysis of selected points along the IRCs of the one-step mechanism of the I-DA reaction between cationic aryl oxonium 6 and cyclopentene 7, in red, and the two-step mechanism of the I-DA reaction between 6 and styrene 12, in blue, allows the establishment of a great similarity in single bond formation along the two mechanisms. Both one-step and two-step mechanisms are non-concerted processes.

ELF similarity between P13 and IN1

ELF similarity between P13 and IN1

Reaction Forces

Complementarity of Reaction Force and Electron Localization

Function Analyses of Asynchronicity in Bond Formation

in Diels-Alder Reactions

D. Yepes, J. S. Murray, P. Pérez, L. R. Domingo, P. Politzer, P. Jaque

Physical Chemistry Chemical Physics

DOI: 10.1039/C3CP54766C (2014)


The reaction force constant, κ(ξ), together with the electron localization function (ELF) analyses of the bonding changes along the intrinsic reaction coordinate (IRC) associated with the polar Diels-Alder (P-DA) reaction between cyclopentadiene and the acroleine:BH3 complex have been studied. For this P-DA reaction, κ(ξ) presents a negative maximum with minima on both sides. The IRC point associated with this maximum shares the reaction path into the two-stages associated with the formation of each one of the two C-C single bonds. The topological ELF analysis of this point shows that while the first C-C single bond is practically formed, the formation of the second C-C has not started yet. Both, κ(ξ) and the ELF topological analyses of the structures involved in the reaction path corroborate that the formation of the two C-C single bonds is non-concerted.


Reaction Forces - ELF

Reaction Forces - ELF

A Review

State of the Art of the Bonding Changes along the Diels-Alder Reaction between Butadiene and Ethylene. Refuting the Pericyclic Mechanism

Abstract

Abstract

Bonding changes along the Diels-Alder reaction between butadiene 1 and ethylene 2 and related non-polar Diels-Alder reactions have been analysed using the bonding evolution theory (BET). Changes in electron density instead of molecular orbitals are used to rationalise the reaction mechanism. The electron localisation function (ELF) analysis indicates that C-C bond formation takes place by the C-to-C coupling of two pseudoradical centers formed along the reaction. The present review permits the establishment of two significant findings: i) the breaking of the C=C double bonds in butadiene 1 and ethylene 2 and the formation of the C-C single bonds in cycloadduct are non-concerted due to the changed in electron density required for the formation of the pseudoradical centers, and ii) the symmetric changes in electron density along these cycloadditions do not have a cyclic movement. These behaviours, which are opposite to the "concerted" and "close curve" bonding changes proposed for the pericyclic reactions allow to refute the pericyclic mechanism for Diels-Alder reactions.


Download Open Access Review




Understanding the Mechanisms of [3+2] Cycloaddition Reactions.

The Pseudodiradical versus the Zwitterionic Mechanism.


Tetrahedron 2014, 70, 1267-1273.


A New Classification of the [3+2] Cycloaddition Reactions

A New Classification of the [3+2] Cycloaddition Reactions

Analysis of the electronic structure of twelve three-atom-components (TACs), and their participation in [3+2] cycloaddition (32CA) reactions towards ethylene and acetylene allows establishing a useful classification of 32CA reactions into zw-type reactions involving TACs with a high zwitterionic character, and pr-type reactions involving TACs with a high pseudodiradical character. While propargylic-type TACs react towards a zw-type mechanism, some allylic-type TACs such as carbonyl and azomethine ylides, which present a high pseudodiradical character, appear to react quickly towards a pr-type mechanism.

This new classification improves the earlier classification made by R. Sustmann (Pure Appl. Chem., 1974, 40, 569) in normal- and inverse-electron demand reactions, since this does not report any information about the polar or non-polar nature of the reactions, nor about the feasibility of the reaction.

Read more

A base catalysis in the C-C bond-formation on the NHC catalysed addition of enols to acyl-azoliums.

A base catalysis in the C-C bond-formation on the NHC catalysed addition of enols to acyl-azoliums.
Org. Biomol. Chem., 2014, 12, 895-904.

A DFT study (MPWB1K/6-31G**) of the NHC catalysed Michael addition of enols to a,b-unsaturated acyl-azoliums shows that along the direct and the conjugated additions, formation of a hydrogen bond of enols with the carboxyl oxygen is not sufficient to favour the C-C bond formation as a consequence of the low nucleophilic character of enols. Interestingly, when enols form a hydrogen bond with the chloride counterion, the activation energies associated with the conjugated addition decrease as a consequence of the increased nucleophilic character of enols and the increased electrophilic character of the 'acyl-azolium + Cl' ion pair. Analysis of the DFT reactivity indices allows establishing a base catalysis for the C-C bond-formation step promoted by the chloride counterion [213].

The Mechanism of the Diels-Alder Reaction.

The Mechanism of the Diels-Alder Reaction

R. B. Woodward

J. Am. Chem. Soc. 1942, 64, 3058-3059

In 1942 R. B. Woodward published a communication to the editor of the J. Am. Chem. Soc. titled "The Mechanism of the Diels-Alder reaction" (J. Am. Chem. Soc. 1942, 64, 3058), in which he proposed an ionic mechanism based on the electron transfer from a substance, e. g., a diene, of relatively low ionization potential and, on the other, a molecule of high electron affinity, e. g., a a,b-unsaturated carbonyl compound. This communication can be considered the earliest theoretical proposal of our polar Diels-Alder mechanism (Org. Biomol. Chem. 2009, 7, 3576).

Read more

Communication

Parr Functions

Building upon our recent studies devoted to the bonding changes in polar reactions [186, 188], we have proposed two new electrophilic,P+, and nucleophilic, P-, Parr functions based on the spin density distribution at the radical anion and at the radical cation of a neutral molecule [202].

These local functions allow for the characterisation of the most electrophilic and nucleophilic centres of molecules, and for the establishment of the regio- and chemoselectivity in polar reactions.

The proposed Parr functions are compared both ,with the Parr-Yang Fukui functions [J. Am. Chem. Soc. 1984, 106, 4049] based on the frontier molecular orbitals, and Yang-Mortier condensed Fukui functions [J. Am. Chem. Soc. 1986, 108, 5708] based on Mulliken charges [202].


Parr functions derived from the atomic spin density of the cation, anion and neutral radicals.

Parr function in intramolecular processes

Parr function in intramolecular processes
Electrophilic and nucleophilic Parr functions in an intramolecular Diels-Alder reaction.

C-C bond formation in polar processes

C-C bond formation in polar processes
C3-C4 bond formation by C-to-C coupling of two pseudoradical centers located on the C3 an C4 atoms.

The topologic ELF analysis of the C-C bond formation in the Friedel-Crafts reaction between indoles and nitroolefins indicates that it takes place by a C-to-C coupling of two pseudoradical centers located at the most electrophilic center of nitroethylene and the most nucleophilic center of N-methyl indole [203]. These relevant centers are achieved via the global charge transfer process that takes place from nucleophilic indole to electrophilic nitroethylene [202].

This reactivity model, which is shown in polar Diels-Alder and 1,3-dipolar cycloaddition reactions [186, 200 and 201] , is opposite to that in which indole attacks nucleophilically to the conjugated position of nitroethylene.


Electron density maps along the C-C bond formation

At 2.00 Å it can be observed the gathering of electron density on the most nucleophilic center of indole and on the most electrophilic center of nitroethylene.

Note that the electron density accumulation at the most electrophilic center of nitroethylene, which is in agreement with my definition of electrophilic center [186 and 202], is contrary to the accepted definition of center with electron deficiency.

POLAR VERSUS NON-POLAR DIELS-ALDER REACTIONS

POLAR VERSUS NON-POLAR DIELS-ALDER REACTIONS

The charge transfer (CT) found at the TSs of Diels-Alder reactions controls the activation energies of this type of cycloaddition reactions [151]. This behaviour has allowed to classify Diels-Alder reactions as non-polar (N-DA) and polar (P-DA).

The polar character of Diels-Alder reactions, and thus their experimental feasibility, can be anticipated analysing the electrophilic and nucleophiles behaviours of the diene and the ethylene.

These proprieties of the organic molecules can be easily obtained by means of the electrophilicity and nucleophilicity indices defined within the conceptual Density Functional Theory (DFT).

logarithm of the experimental rate constant versus calculated CT at the TS

logarithm of the experimental rate constant versus calculated CT at the TS
A good correlation is found for the P-DA reactions between Cp and the tetracyanoethylene series.

the polarity increases with the electrophilic character of the ethylene

the polarity increases with the electrophilic character of the ethylene

New Concept of electrophilic centers

New Concept of electrophilic centers
Electrophilic centres have been related with positively charged centres. Thus, in carbonyl compounds, the carbon atom is associated with the most electrophilic atom.

Our recent studies have established that the most electrophilic centres are those receiving most of the electron density along the global charge transfer from the nucleophile to the electrophile.
Thus, in benzoquinones, the most electrophilic centres are oxygen atoms, in spite of being negatively charged [186].

Analysis of the recently proposed Parr functions allows for the characterization of the most electrophilic and nucleophilic centres of a molecule [202].

Translate