An entry of the MEDT in Encyclopaedia has been introduced
The link is https://encyclopedia.pub/3395
Dear colleagues, today I have created
in Twitter MEDT-2016 (@2016Medt)
to spread the Molecular Electron Density Theory (MEDT) as a modern model of
reactivity in Organic Chemistry.
You can follow the advances of MEDT
in this Twitter.
(10/10/2020)
A recent MEDT study about the reactivity of strained benzyne has revealed the
chameleonic structure/reactivity of benzyne, allowing its participation in both
non-polar, as a pseudodiradical species, and in polar reaction, as an electrophilic
carbenoid, with unappreciable activation energies (Tetrahedron 2020, 76, 131458).
This interesting MEDT study can be downloaded before October 24, 2020 clicking on this link: https://authors.elsevier.com/c/1bhJd_wokpeuc
This manuscript was firstly rejected of RSC Advances by Gabriel Merino, a physic editor, that showed a complete lack of knowledge of Organic Chemistry to not respond to any of the three rebuttal letters that I sent to the editorial answering the referee’s comments, and in which I emphasised the chemical relevance of this MEDT study.
It is not new, unfortunately many of the very cited
manuscripts were firstly rejected by physic editors with a complete lack of
knowledge of Chemistry.
(8/9/2020)
Molecular Electron Density Theory
Molecules 2016, 21, 1319
download
Studies based on the MEDT make it possible to rule out outdated concepts developed within the Molecular Orbital theory such as:
______________________________________________________________________
Publications based on MEDT
6. Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theor. Chem. Acc. 2017, 136:1.
7. A Molecular Electron Density Theory Study of the
8. How does the Global Electron Density Transfer Diminish Activation Energies in Polar Cycloaddition Reactions? A Molecular Electron Density Theory Study. Tetrahedron 2017, 73, 1718-1724 .
9. Understanding the domino reactions between 1-diazopropan-2-one and 1,1-dinitroethylene. A molecular electron density theory study of the [3+2] cycloaddition reactions of diazoalkanes with electron-deficient ethylenes. RSC Adv. 2017, 7, 15586–15595.
10. Steric interactions controlling the syn diastereofacial selectivity in the [3+2] cycloaddition reaction between acetonitrile axide and 7-oxanorborn-5-en-2-ones. A Molecular Electron Density Theory study. J. Phys. Org. Chem. (2017).
12. A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Nitrones with Strained Allene. RSC Adv. 2017, 7, 26879-26887.
15. A Molecular Electron Density Theory study of [3+2] cycloaddition reactions of chiral azomethine ylides with ß-nitrostyrene. Theor. Chem. Acc. 2017, 136:104.
16. Understanding the Intramolecular Diels-Alder Reactions of N-Susbtituted N-allyl-furfurylamines. An MEDT Study. ChemistrySelect 2017, 2, 9736.
17. Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory. Theor. Chem. Acc. 2017, 136:129.
18. A Molecular Electron Density Theory study of the chemo- and regioselective [3+2] cycloaddition reactions between trifluoroacetonitrile N-oxide and thioketones
Chemical Physics 2018, 501, 128-137.
19. Experimental and Theoretical MEDT Study of the Thermal [3+2] Cycloaddition Reactions of Aryl Azides with Alkyne Derivatives. ChemistrySelect 2018, 3, 1215– 1223.
20. The Mysticism of Pericyclic Reactions. A Contemporary Rationalisation of Organic Reactivity Based on the Electron Density Analysis. Eur. J. Org. Chem. 2018, 1107–1120.
21. A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3+2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. J. Org. Chem. 2018, 83, 2182−2197.
22. A Molecular Electron Density Theory study of the [3+2] cycloaddition reaction between an azomethine imine and electron deficient ethylenes. J. Phys. Org. Chem. 2017, 31:e3830.
23. Molecular Electron Density Theory Study of Fused Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Nitrones. ChemistrySelect 2018, 3, 5412–5420.
24. A Molecular Electron Density Theory Study of the Role of the Copper-Metallation of Azomethine Ylides in [3+2] Cycloaddition Reactions. J. Org. Chem. 2018, 83, 10959-10973.
25. A Molecular Electron Density Theory Study of the Competitiveness of Polar Diels-Alder and Polar Alder Ene Reactions. Molecules 2018, 23, 1913.
26. A Molecular Electron Density Theory Study of the Chemoselectivity, Regioselectivity and Diastereofacial Selectivity in the Synthesis of an Anti-Cancer Spiro-Isoxazoline derived from α-Santonin. Molecules 2019, 24, 832.
27. Understanding the Mechanism of Nitrobenzene Nitration with Nitronium Ion. A Molecular Electron Density Theory Study. ChemistrySelect 2019, 4, 13313–13319
28. A Molecular Electron Density Theory Study of the Enhanced Reactivity of Aza Aromatic Compounds Participating in Diels-Alder Reactions. Org. Biomol. Chem. 2020, 18, 292 –304
29. A molecular electron density theory study of the Grignard reagent-mediated regioselective direct synthesis of 1,5-disubstituted-1,2,3-triazoles. J. Phys. Org. Chem. 2020, e4062
30. Unveiling the Different Chemical Reactivity of Diphenyl Nitrilimine and Phenyl Nitrile Oxide in [3+2] Cycloaddition Reactions with (R)-Carvone through the Molecular Electron Density Theory. Molecules 2020, 25, 1085.
31. A Molecular Electron Density Theory Study of the Reactivity of Tetrazines in Aza-Diels-Alder Reactions. RSC Adv. 2020, 10, 15394.
32. A molecular electron density theory study on an oxa-Diels-Alder reaction: exploration of different impacts of AlCl3 as a Lewis acid catalyst. ChemistrySelect 2020, 5, 5341.
Review
Understanding the high reactivity of carbonyl compounds towards nucleophilic carbenoid intermediates generated from carbene isocyanides
During this September 2020, I have reached the following bibliometric rates:
Publications: 320
Citations: 12.100
Index h: 54
Thanks to those who have contributed to this vast work, and those who have read and cited the corresponding publications.
A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density.
ELF topological analyses of bonding changes in non-polar, polar and ionic organic reactions involving the participation of C=C(X) double bonds make it possible to establish a unified model for C-C bond formation. This model is characterised by a C-to-C coupling of two pseudoradical centers generated at the most significant atoms of the reacting molecules. The global electron density transfer (GEDT) process that takes place along polar and ionic reactions favours the creation of these pseudoradical centers at the most nucleophilic/electrophilic centers of the reacting molecules, decreasing activation energies. The proposed reactivity model based on the topological analysis of the changes in electron density along a reaction makes it possible to reject the frontier molecular orbital reactivity model based on the analysis of molecular orbitals.