Molecular Electron Density Theory
Studies based on the MEDT make it possible to rule out outdated concepts developed within the Molecular Orbital theory such as:
______________________________________________________________________
6. Electrophilic activation of CO2 in cycloaddition reactions towards a nucleophilic carbenoid intermediate: new defying insights from the Molecular Electron Density Theory. Theor. Chem. Acc. 2017, 136:1.
7. A Molecular Electron Density Theory Study of the
8. How does the Global Electron Density Transfer Diminish Activation Energies in Polar Cycloaddition Reactions? A Molecular Electron Density Theory Study. Tetrahedron 2017, 73, 1718-1724 .
9. Understanding the domino reactions between 1-diazopropan-2-one and 1,1-dinitroethylene. A molecular electron density theory study of the [3+2] cycloaddition reactions of diazoalkanes with electron-deficient ethylenes. RSC Adv. 2017, 7, 15586–15595.
10. Steric interactions controlling the syn diastereofacial selectivity in the [3+2] cycloaddition reaction between acetonitrile axide and 7-oxanorborn-5-en-2-ones. A Molecular Electron Density Theory study. J. Phys. Org. Chem. (2017).
12. A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of Nitrones with Strained Allene. RSC Adv. 2017, 7, 26879-26887.
15. A Molecular Electron Density Theory study of [3+2] cycloaddition reactions of chiral azomethine ylides with ß-nitrostyrene. Theor. Chem. Acc. 2017, 136:104.
16. Understanding the Intramolecular Diels-Alder Reactions of N-Susbtituted N-allyl-furfurylamines. An MEDT Study. ChemistrySelect 2017, 2, 9736.
17. Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory. Theor. Chem. Acc. 2017, 136:129.
18. A Molecular Electron Density Theory study of the chemo- and regioselective [3+2] cycloaddition reactions between trifluoroacetonitrile N-oxide and thioketones
Chemical Physics 2018, 501, 128-137.
19. Experimental and Theoretical MEDT Study of the Thermal [3+2] Cycloaddition Reactions of Aryl Azides with Alkyne Derivatives. ChemistrySelect 2018, 3, 1215– 1223.
20. The Mysticism of Pericyclic Reactions. A Contemporary Rationalisation of Organic Reactivity Based on the Electron Density Analysis. Eur. J. Org. Chem. 2018, 1107–1120.
21. A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3+2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. J. Org. Chem. 2018, 83, 2182−2197.
22. A Molecular Electron Density Theory study of the [3+2] cycloaddition reaction between an azomethine imine and electron deficient ethylenes. J. Phys. Org. Chem. 2017, 31:e3830.
23. Molecular Electron Density Theory Study of Fused Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Nitrones. ChemistrySelect 2018.
Review
Understanding the high reactivity of carbonyl compounds towards nucleophilic carbenoid intermediates generated from carbene isocyanides
During this March 2017 I have reached the following bibliometric rates:
Publications: 275
Citations: 7.700
Index h: 45
Thanks to those who have contributed to this vast work, and those who have read and cited the corresponding publications.
A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density.
ELF topological analyses of bonding changes in non-polar, polar and ionic organic reactions involving the participation of C=C(X) double bonds make it possible to establish a unified model for C-C bond formation. This model is characterised by a C-to-C coupling of two pseudoradical centers generated at the most significant atoms of the reacting molecules. The global electron density transfer (GEDT) process that takes place along polar and ionic reactions favours the creation of these pseudoradical centers at the most nucleophilic/electrophilic centers of the reacting molecules, decreasing activation energies. The proposed reactivity model based on the topological analysis of the changes in electron density along a reaction makes it possible to reject the frontier molecular orbital reactivity model based on the analysis of molecular orbitals.